scholarly journals Vialinin A, an Edible Mushroom-Derived p-Terphenyl Antioxidant, Prevents VEGF-Induced Neovascularization In Vitro and In Vivo

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Himangshu Sonowal ◽  
Kirtikar Shukla ◽  
Sumedha Kota ◽  
Ashish Saxena ◽  
Kota V. Ramana

Increased side toxicities and development of drug resistance are the major concern for the cancer chemotherapy using synthetic drugs. Therefore, identification of novel natural antioxidants with potential therapeutic efficacies is important. In the present study, we have examined how the antioxidant and anti-inflammatory activities of vialinin A, a p-terphenyl compound derived from Chinese edible mushroomT. terrestrisandT. vialis, prevents human umbilical vascular endothelial cell (HUVEC) neovascularization in vitro and in vivo models. Pretreatment of HUVECs with vialinin A prevents vascular endothelial growth factor- (VEGF) induced HUVEC cell growth in a dose-dependent manner. Further, vialinin A also inhibits VEGF-induced migration as well as tube formation of HUVECs. Treatment of HUVECs prevents VEGF-induced generation of reactive oxygen species (ROS) and malondialdehyde (MDA) and also inhibits VEGF-induced NF-κB nuclear translocation as well as DNA-binding activity. The VEGF-induced release of various angiogenic cytokines and chemokines in HUVECs was also significantly blunted by vialinin A. Most importantly, in a mouse model of Matrigel plug assay, vialinin A prevents the formation of new blood vessels and the expression of CD31 and vWF. Thus, our results indicate a novel role of vialinin A in the prevention of neovascularization and suggest that anticancer effects of vialinin A could be mediated through its potent antioxidant and antiangiogenic properties.

2018 ◽  
Vol 46 (2) ◽  
pp. 520-531 ◽  
Author(s):  
Yan Ding ◽  
Lanlan Shan ◽  
Wenqing Nai ◽  
Xiaojun Lin ◽  
Ling Zhou ◽  
...  

Background/Aims: The mechanistic target of rapamycin (mTOR) signaling pathway is essential for angiogenesis and embryonic development. DEP domain-containing mTOR-interacting protein (DEPTOR) is an mTOR binding protein that functions to inhibit the mTOR pathway In vitro experiments suggest that DEPTOR is crucial for vascular endothelial cell (EC) activation and angiogenic responses. However, knowledge of the effects of DEPTOR on angiogenesis in vivo is limited. This study aimed to determine the role of DEPTOR in tissue angiogenesis and to elucidate the molecular mechanisms. Methods: Cre/loxP conditional gene knockout strategy was used to delete the Deptor gene in mouse vascular ECs. The expression or distribution of cluster of differentiation 31 (CD31), vascular endothelial growth factor (VEGF) and hypoxia inducible factor-1 alpha (HIF-1α) were detected by immunohistochemical staining or western blot. Tube formation assay was used to measure angiogenesis in vitro. Results: Deptor knockdown led to increased expression of CD31, VEGF and HIF-1α in heart, liver, kidney and aorta. After treatment with rapamycin, their expression was significantly down regulated. In vitro, human umbilical vein endothelial cells (HUVECs) were transfected with DEPTOR-specific small interfering RNA (siRNA), which resulted in a significant increase in endothelial tube formation and migration rates. In contrast, DEPTOR overexpression markedly reduced the expression of CD31, VEGF and HIF-1α. Conclusions: Our findings demonstrated that deletion of the Deptor gene in vascular ECs resulted in upregulated expression of CD31 and HIF-1α, and further stimulated the expression of VEGF which promoted angiogenesis, indicating that disruption of normal angiogenic pathways may occur through hyperactivation of the mTORC1/HIF-1α/VEGF signaling pathway.


Blood ◽  
2010 ◽  
Vol 115 (20) ◽  
pp. 4130-4137 ◽  
Author(s):  
Jinmin Gao ◽  
Lei Sun ◽  
Lihong Huo ◽  
Min Liu ◽  
Dengwen Li ◽  
...  

Cylindromatosis (CYLD) is a deubiquitinase that was initially identified as a tumor suppressor and has recently been implicated in diverse normal physiologic processes. In this study, we have investigated the involvement of CYLD in angiogenesis, the formation of new blood vessels from preexisting ones. We find that knockdown of CYLD expression significantly impairs angiogenesis in vitro in both matrigel-based tube formation assay and collagen-based 3-dimensional capillary sprouting assay. Disruption of CYLD also remarkably inhibits angiogenic response in vivo, as evidenced by diminished blood vessel growth into the angioreactors implanted in mice. Mechanistic studies show that CYLD regulates angiogenesis by mediating the spreading and migration of vascular endothelial cells. Silencing of CYLD dramatically decreases microtubule dynamics in endothelial cells and inhibits endothelial cell migration by blocking the polarization process. Furthermore, we identify Rac1 activation as an important factor contributing to the action of CYLD in regulating endothelial cell migration and angiogenesis. Our findings thus uncover a previously unrecognized role for CYLD in the angiogenic process and provide a novel mechanism for Rac1 activation during endothelial cell migration and angiogenesis.


2014 ◽  
Vol 34 (3) ◽  
pp. 260-265 ◽  
Author(s):  
F Yesildal ◽  
FN Aydin ◽  
S Deveci ◽  
S Tekin ◽  
I Aydin ◽  
...  

Angiogenesis is the process of generating new blood vessels from preexisting vessels and is considered essential in many pathological conditions. The purpose of the present study is to evaluate the effect of aspartame on angiogenesis in vivo chick chorioallantoic membrane (CAM) and wound-healing models as well as in vitro 2,3-bis-2 H-tetrazolium-5-carboxanilide (XTT) and tube formation assays. In CAM assay, aspartame increased angiogenesis in a concentration-dependent manner. Compared with the control group, aspartame has significantly increased vessel proliferation ( p < 0.001). In addition, in vivo rat model of skin wound-healing study showed that aspartame group had better healing than control group, and this was statistically significant at p < 0.05. There was a slight proliferative effect of aspartame on human umbilical vein endothelial cells on XTT assay in vitro, but it was not statistically significant; and there was no antiangiogenic effect of aspartame on tube formation assay in vitro. These results provide evidence that aspartame induces angiogenesis in vitro and in vivo; so regular use may have undesirable effect on susceptible cases.


Toxins ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 102 ◽  
Author(s):  
Florence Chalier ◽  
Laura Mugnier ◽  
Marion Tarbe ◽  
Soioulata Aboudou ◽  
Claude Villard ◽  
...  

In the soft treatment of cancer tumours, consequent downregulation of the malignant tissue angiogenesis constitutes an efficient way to stifle tumour development and metastasis spreading. As angiogenesis requires integrin–promoting endothelial cell adhesion, migration, and vessel tube formation, integrins represent potential targets of new therapeutic anti–angiogenic agents. Our work is a contribution to the research of such therapeutic disintegrins in animal venoms. We report isolation of one peptide, named Dabmaurin–1, from the hemotoxic venom of snake Daboia mauritanica, and we evaluate its potential anti–tumour activity through in vitro inhibition of the human vascular endothelial cell HMECs functions involved in tumour angiogenesis. Dabmaurin–1 altered, in a dose–dependent manner, without any significant cytotoxicity, HMEC proliferation, adhesion, and their mesenchymal migration onto various extracellular matrix proteins, as well as formation of capillary–tube mimics on MatrigelTM. Via experiments involving HMEC or specific cancers cells integrins, we demonstrated that the above Dabmaurin–1 effects are possibly due to some anti–integrin properties. Dabmaurin–1 was demonstrated to recognize a broad panel of prooncogenic integrins (αvβ6, αvβ3 or αvβ5) and/or particularly involved in control of angiogenesis (α5β1, α6β4, αvβ3 or αvβ5). Furthermore, mass spectrometry and partial N–terminal sequencing of this peptide revealed, it is close to Lebein–1, a known anti–β1 disintegrin from Macrovipera lebetina venom. Therefore, our results show that if Dabmaurin–1 exhibits in vitro apparent anti–angiogenic effects at concentrations lower than 30 nM, it is likely because it acts as an anti–tumour disintegrin.


Biomedicines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 420
Author(s):  
Su-Jung Hwang ◽  
Ye-Seul Song ◽  
Hyo-Jong Lee

Kushen (Radix Sophorae flavescentis) is used to treat ulcerative colitis, tumors, and pruritus. Recently, phaseolin, formononetin, matrine, luteolin, and quercetin, through a network pharmacology approach, were tentatively identified as five bioactive constituents responsible for the anti-inflammatory effects of S. flavescentis. However, the role of phaseolin (one of the primary components of S. flavescentis) in the direct regulation of inflammation and inflammatory processes is not well known. In this study, the beneficial role of phaseolin against inflammation was explored in lipopolysaccharide (LPS)-induced inflammation models of RAW 264.7 macrophages and zebrafish larvae. Phaseolin inhibited LPS-mediated production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS), without affecting cell viability. In addition, phaseolin suppressed pro-inflammatory mediators such as cyclooxygenase 2 (COX-2), interleukin-1β (IL-1β), tumor necrosis factor α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), and interleukin-6 (IL-6) in a dose-dependent manner. Furthermore, phaseolin reduced matrix metalloproteinase (MMP) activity as well as macrophage adhesion in vitro and the recruitment of leukocytes in vivo by downregulating Ninjurin 1 (Ninj1), an adhesion molecule. Finally, phaseolin inhibited the nuclear translocation of nuclear factor-kappa B (NF-κB). In view of the above, our results suggest that phaseolin could be a potential therapeutic candidate for the management of inflammation.


Blood ◽  
1998 ◽  
Vol 92 (9) ◽  
pp. 3268-3276 ◽  
Author(s):  
Chia Hsin Yeh ◽  
Hui-Chin Peng ◽  
Tur-Fu Huang

Abstract Endothelial integrins play an essential role in angiogenesis and cell survival. Accutin, a new member of disintegrin family derived from venom of Agkistrodon acutus, potently inhibited human platelet aggregation caused by various agonists (eg, thrombin, collagen, and, adenosine diphosphate [ADP]) through the blockade of fibrinogen binding to platelet glycoprotein IIb/IIIa (ie, integrin IIbβ3). In this report, we describe that accutin specifically inhibited the binding of monoclonal antibody (MoAb) 7E3, which recognizes integrin vβ3, to human umbilical vein endothelial cells (HUVECs), but not those of other anti-integrin MoAbs such as 2β1, 3β1, and 5β1. Moreover, accutin, but not the control peptide GRGES, dose-dependently inhibited the 7E3 interaction with HUVECs. Both 7E3 and GRGDS, but not GRGES or Integrelin, significantly blocked fluorescein isothiocyanate-conjugated accutin binding to HUVEC. In functional studies, accutin exhibited inhibitory effects on HUVEC adhesion to immobilized fibrinogen, fibronectin and vitronectin, and the capillary-like tube formation on Matrigel in a dose- and RGD-dependent manner. In addition, it exhibited an effective antiangiogenic effect in vivo when assayed by using the 10-day-old embryo chick CAM model. Furthermore, it potently induced HUVEC apoptotic DNA fragmentation as examined by electrophoretic and flow cytometric assays. In conclusion, accutin inhibits angiogenesis in vivo and in vitro by blocking integrin vβ3 of endothelial cells and by inducing apoptosis. The antiangiogenic activity of disintegrins might be explored as the target of developing the potential antimetastatic agents. © 1998 by The American Society of Hematology.


2020 ◽  
Vol 21 (13) ◽  
pp. 4627
Author(s):  
Olivia Rastoin ◽  
Gilles Pagès ◽  
Maeva Dufies

Neovascular age-related macular degeneration (vAMD), characterized by the neo-vascularization of the retro-foveolar choroid, leads to blindness within few years. This disease depends on angiogenesis mediated by the vascular endothelial growth factor A (VEGF) and to inflammation. The only available treatments consist of monthly intravitreal injections of antibodies directed against VEGF or VEGF/VEGFB/PlGF decoy receptors. Despite their relative efficacy, these drugs only delay progression to blindness and 30% of the patients are insensitive to these treatments. Hence, new therapeutic strategies are urgently needed. Experimental models of vAMD are essential to screen different innovative therapeutics. The currently used in vitro and in vivo models in ophthalmic translational research and their relevance are discussed in this review.


2015 ◽  
Vol 36 (4) ◽  
pp. 1539-1551 ◽  
Author(s):  
Qian Yu ◽  
Zhihong Lu ◽  
Lei Tao ◽  
Lu Yang ◽  
Yu Guo ◽  
...  

Background/Aims: Stroke is among the top causes of death worldwide. Neuroprotective agents are thus considered as potentially powerful treatment of stroke. Methods: Using both HT22 cells and male Sprague-Dawley rats as in vitro and in vivo models, we investigated the effect of NaHS, an exogenous donor of H2S, on the focal cerebral ischemia-reperfusion (I/R) induced brain injury. Results: Administration of NaHS significantly decreased the brain infarcted area as compared to the I/R group in a dose-dependent manner. Mechanistic studies demonstrated that NaHS-treated rats displayed significant reduction of malondialdehyde content, and strikingly increased activity of superoxide dismutases and glutathione peroxidase in the brain tissues compared with I/R group. The enhanced antioxidant capacity as well as restored mitochondrial function are NaHS-treatment correlated with decreased cellular reactive oxygen species level and compromised apoptosis in vitro or in vivo in the presence of NaHS compared with control. Further analysis revealed that the inhibition of PARP-1 cleavage and AIF translocation are involved in the neuroprotective effects of NaHS. Conclusion: Collectively, our results suggest that NaHS has potent protective effects against the brain injury induced by I/R. NaHS is possibly effective through inhibition of oxidative stress and apoptosis.


Blood ◽  
2009 ◽  
Vol 114 (26) ◽  
pp. 5393-5399 ◽  
Author(s):  
Ronen Ben-Ami ◽  
Russell E. Lewis ◽  
Konstantinos Leventakos ◽  
Dimitrios P. Kontoyiannis

AbstractIn susceptible hosts, angioinvasion by Aspergillus fumigatus triggers thrombosis, hypoxia, and proinflammatory cytokine release, all of which are stimuli for angiogenesis. We sought to determine whether A fumigatus directly modulates angiogenesis. A fumigatus culture filtrates profoundly inhibited the differentiation, migration, and capillary tube formation of human umbilical vein endothelial cells in vitro. To measure angiogenesis at the site of infection, we devised an in vivo Matrigel assay in cyclophosphamide-treated BALB/c mice with cutaneous invasive aspergillosis. Angiogenesis was significantly suppressed in Matrigel plugs implanted in A fumigatus–infected mice compared with plugs from uninfected control mice. The antiangiogenic effect of A fumigatus was completely abolished by deletion of the global regulator of secondary metabolism, laeA, and to a lesser extent by deletion of gliP, which controls gliotoxin production. Moreover, pure gliotoxin potently inhibited angiogenesis in vitro in a dose-dependent manner. Finally, overexpression of multiple angiogenesis mediator–encoding genes was observed in the lungs of cortisone-treated mice during early invasive aspergillosis, whereas gene expression returned rapidly to baseline levels in cyclophosphamide/cortisone-treated mice. Taken together, these results indicate that suppression of angiogenesis by A fumigatus both in vitro and in a neutropenic mouse model is mediated through secondary metabolite production.


1997 ◽  
Vol 82 (7) ◽  
pp. 2135-2142
Author(s):  
Lane K. Christenson ◽  
Richard L. Stouffer

Granulosa cells in the ovulatory follicle express messenger ribonucleic acid encoding vascular endothelial growth factor (VEGF), an agent that may mediate the neovascularization of the developing corpus luteum, but it is not known whether luteinizing granulosa cells synthesize and secrete VEGF during the periovulatory interval. Studies were designed to evaluate the effects of an in vivo gonadotropin surge on VEGF production by macaque granulosa cells (study 1) and to test the hypothesis that gonadotropins act directly on granulosa cells to regulate VEGF production (study 2). Monkeys received a regimen of exogenous gonadotropins to promote the development of multiple preovulatory follicles. Nonluteinized granulosa cells (i.e. preovulatory; NLGC) and luteinized granulosa cells (i.e. periovulatory; LGC) were aspirated from follicles before and 27 h after an ovulatory gonadotropin bolus, respectively. Cells were either incubated for 24 h in medium with or without 100 ng/mL hCG (study 1) or cultured for 6 days in medium with or without 100 ng/mL hCG or 0.1, 1, 10, and 100 ng/mL of recombinant human LH (r-hLH) or r-hFSH (study 2). Culture medium was assayed for VEGF and progesterone. In study 1, LGC produced 8-fold greater levels of VEGF than NLGC (899 ± 471 vs. 111 ± 26 pg/mL, mean ± sem; P &lt; 0.05). In vitro treatment with hCG increased (P &lt; 0.05) VEGF production by NLGC to levels that were not different from the LGC incubated under control conditions. In vivo bolus doses of r-hCG (100 and 1000 IU) and r-hFSH (2500 IU) were equally effective in elevating granulosa cell VEGF production. In study 2, in vitro treatment with r-hFSH, r-hLH, and hCG markedly increased (P&lt; 0.05) VEGF and progesterone production by the NLGC in a dose- and time-dependent manner. By comparison, the three gonadotropins (100 ng/mL dose) only modestly increased VEGF and progesterone production by LGC. These experiments demonstrate a novel role for the midcycle surge of gonadotropin (LH/CG or FSH) in primates to promote VEGF production by granulosa cells in the periovulatory follicle. Further, the data demonstrate that FSH-like as well as LH-like gonadotropins directly stimulate VEGF synthesis by granulosa cells.


Sign in / Sign up

Export Citation Format

Share Document