scholarly journals The Multiobjective Based Large-Scale Electric Vehicle Charging Behaviours Analysis

Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Yimin Zhou ◽  
Zhifei Li ◽  
Xinyu Wu

In the paper, the effect of the charging behaviours of electric vehicles (EVs) on the grid load is discussed. The residential traveling historical data of EVs are analyzed and fitted to predict their probability distribution, so that the models of the traveling patterns can be established. A nonlinear stochastic programming model with the maximized comprehensive index is developed to analyze the charging schemes, and a heuristic searching algorithm is used for the optimal parameters configuration. With the comparison of the evaluation criteria, the multiobjective strategy is more appropriate than the single-objective strategy for the charging, i.e., electricity price. Furthermore, considering the characteristics of the normal batteries and charging piles, user behaviour and EV scale, a Monte Carlo simulation process is designed to simulate the large-scale EVs traveling behaviours in long-term periods. The obtained simulation results can provide prediction for the analysis of the energy demand growth tendency of the future EVs regulation. As a precedent of open-source simulation system, this paper provides a stand-alone strategy and architecture to regulate the EV charging behaviours without the unified monitoring or management of the grid.

2021 ◽  
Vol 13 (22) ◽  
pp. 12379
Author(s):  
Raymond Kene ◽  
Thomas Olwal ◽  
Barend J. van Wyk

The future direction of electric vehicle (EV) transportation in relation to the energy demand for charging EVs needs a more sustainable roadmap, compared to the current reliance on the centralised electricity grid system. It is common knowledge that the current state of electricity grids in the biggest economies of the world today suffer a perennial problem of power losses; and were not designed for the uptake and integration of the growing number of large-scale EV charging power demands from the grids. To promote sustainable EV transportation, this study aims to review the current state of research and development around this field. This study is significant to the effect that it accomplishes four major objectives. (1) First, the implication of large-scale EV integration to the electricity grid is assessed by looking at the impact on the distribution network. (2) Secondly, it provides energy management strategies for optimizing plug-in EVs load demand on the electricity distribution network. (3) It provides a clear direction and an overview on sustainable EV charging infrastructure, which is highlighted as one of the key factors that enables the promotion and sustainability of the EV market and transportation sector, re-engineered to support the United Nations Climate Change Agenda. Finally, a conclusion is made with some policy recommendations provided for the promotion of the electric vehicle market and widespread adoption in any economy of the world.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1545 ◽  
Author(s):  
Sara Deilami ◽  
S. M. Muyeen

The electrification of transportation has been developed to support energy efficiency and CO2 reduction. As a result, electric vehicles (EVs) have become more popular in the current transport system to create more efficient energy. In recent years, this increase in EVs as well as renewable energy resources (RERs) has led to a major issue for power system networks. This paper studies electrical vehicles (EVs) and their applications in the smart grid and provides practical solutions for EV charging strategies in a smart power system to overcome the issues associated with large-scale EV penetrations. The research first reviews the EV battery infrastructure and charging strategies and introduces the main impacts of uncontrolled charging on the power grid. Then, it provides a practical overview of the existing and future solutions to manage the large-scale integration of EVs into the network. The simulation results for two controlled strategies of maximum sensitivity selection (MSS) and genetic algorithm (GA) optimization are presented and reviewed. A comparative analysis was performed to prove the application and validity of the solution approaches. This also helps researchers with the application of the optimization approaches on EV charging strategies. These two algorithms were implemented on a modified IEEE 23 kV medium voltage distribution system with switched shunt capacitors (SSCs) and a low voltage residential network, including EVs and nonlinear EV battery chargers.


2012 ◽  
Vol 608-609 ◽  
pp. 1582-1586
Author(s):  
Jian Wang ◽  
Kui Hua Wu ◽  
Feng Wang ◽  
Kui Zhong Wu ◽  
Zhi Zhen Liu

The large scale development of electric vehicle will have both benefits and potential stresses on power grid. It is shown that uncoordinated charging of EVs’ on the grid will produce series of problems, while intelligent charging can improve the operation of the power grid. In this study, based on several scenarios of charging modes, such as plug and charge, night charging and intelligent charging, the corresponding EV load models have been established. Therefore, an analysis is performed for the load characteristics of Shandong power grid to demonstrate the impacts of different EV charging scenarios. The results demonstrate that rational utilization of EVs’ load and energy storage property can help to decrease the maximum load of grid and the peak-valley difference, to stable load, and to raise the utilization of the power facilities.


2019 ◽  
Vol 10 (2) ◽  
pp. 47 ◽  
Author(s):  
Yutong Zhao ◽  
Hong Huang ◽  
Xi Chen ◽  
Baoqun Zhang ◽  
Yiguo Zhang ◽  
...  

A charging load allocation strategy for Electric Vehicles (EVs) considering charging mode is proposed in this paper in order to solve the challenge and opportunity of large-scale grid-connected charging under the background of booming EV industry in recent years. Based on the peak-to-valley Time-of-Use (TOU) price, this strategy studies the grid load, charging cost and charging station revenue variation of EVs connected to the grid in different charging modes. In addition, this paper proposes an additional charging mechanism for charging stations to encourage EV owners to participate in the peak and valley reduction of the grid through coordinated charging. According to the example analysis, under the same charging demand conditions, the larger EV charging power will have a greater impact on the grid than the conventional charging power. This article collects additional service fees for car owners who are not involved in the coordinated charging. When the response charging ratio is less, the more total service charges are charged, which can compensate for the decline in the sales revenue of the charging station during the valley period. While having good economy, it can also encourage the majority of car owners to participate in the coordinated charging from the perspective of charging cost.


2011 ◽  
Vol 128-129 ◽  
pp. 1093-1096
Author(s):  
Xiang Fu ◽  
Jia Yao

Firstly, this paper proposed that charging network for Electric Vehicle (EV) should be consisted of the special motorcade charging system and general charging system mainly, and the emergency charging system auxiliary. This paper put forward the suggestions that EV charging network construction should carry on with EV development synchronization, give full play to advantages of dispersion charging, charging avoiding peak load and charge in valley load, instead of laying a large-scale charge-station network. Secondly, this paper discussed the construction and the management of charging network, focused on the network planning, charging standards, and the role of power enterprises. Finally, the pattern of charging operation and the management is chosen, three kinds of patterns are proposed to different periods and users, the centralism charging management pattern, the dispersion charging and centralism maintenance pattern, as well as the battery renting pattern.


Electric Vehicles (EV) are the world’s future transport systems. With the rise in pollutions and its effects on the environment, there has been a large scale movetowards electrical vehicles. But the plug point availability for charging is the serious problem faced by the mostof Electric Vehicle consumers. Therefore, there is a definite need to move from the GRID based/connected charging stations to standalone off-grid stations for charging the Electric Vehicles. The objective of this paper is to arrive at the best configuration or mix of the renewable resources and energy storage systems along with conventional Diesel Generator set which together works in offgrid for Electric Vehicle charging. As aconclusion, by utilizing self-sustainable off-grid power generation technology, the availability of EV charging stations in remote localities at affordable price can be made and mainly it reduces burden on the existing electrical infrastructure.


2021 ◽  
Author(s):  
Theodora Konstantinou ◽  
Diala Haddad ◽  
Akhil Prasad ◽  
Ethan Wright ◽  
Konstantina Gkritza ◽  
...  

Electric Roadways (ERs) or Dynamic Wireless Charging (DWC) lanes offer an alternative dynamic and wireless charging method that has the potential of giving electric vehicles (EV) limitless range while they are moving. Heavy-duty vehicles (HDVs) are expected to be early adopters of the DWC technology due to the higher benefits offered to these vehicles that are traveling on fixed routes. The goal of this project was to assess the feasibility of ERs in Indiana and design a test bed for in-road EV charging technologies. The most suitable locations for implementing DWC lanes were identified on interstates that are characterized by high truck traffic. Using I-65 S as a case study, it was found that DWC can be economically feasible for the developer and competitive for the EV owner at high and medium future projections of EV market penetration levels. However, the existing substations are unlikely to serve future DWC needs for HDVs. Thus, consideration should be given to substation expansion to support EVs as market penetration expands. Implementing the DWC technology on interstates and jointly with major pavement preservation activities is recommended. Large scale deployment can significantly reduce the high initial investment. Renewable energy resources (solar and wind) deployed in the vicinity of ERs can reduce the electricity costs and associated greenhouse gas emissions.


Author(s):  
Glenn Wasson ◽  
Marty Humphrey

State management has always been an underlying issue for large scale distributed systems, but it has only recently been brought to the forefront of Grid computing with the introduction of the Web services resource framework (WSRF) and its companion WS-notification. WSRF advocates standardized approaches for client exposure to and potential manipulation of stateful services for Grid computing; however, these arguments and their long term implications have been difficult to assess without a concrete implementation of the WSRF specifications. This chapter describes the architectural foundations of WSRF.NET, which is an implementation of the full set of specifications for WSRF and WS-notification on the Microsoft .NET framework. To our knowledge, the observations and lessons learned from the design and implementation of WSRF.NET provide the first evaluation of the WSRF approach. A concrete example of the design, implementation and deployment of a WSRF-compliant service and its accompanying WSRF-compliant client are used to guide the discussion. While the potential of WSRF and WS-notification remains strong, initial observations are that there are many challenges that remain to be solved, most notably the implied programming model derived from the specifications, particularly the complexity of service-side and client-code and the complexity of WS-notification.


2020 ◽  
Vol 10 (16) ◽  
pp. 5654
Author(s):  
Fuad Noman ◽  
Ammar Ahmed Alkahtani ◽  
Vassilios Agelidis ◽  
Kiong Sieh Tiong ◽  
Gamal Alkawsi ◽  
...  

The integration of large-scale wind farms and large-scale charging stations for electric vehicles (EVs) into electricity grids necessitates energy storage support for both technologies. Matching the variability of the energy generation of wind farms with the demand variability of the EVs could potentially minimize the size and need for expensive energy storage technologies required to stabilize the grid. This paper investigates the feasibility of using the wind as a direct energy source to power EV charging stations. An interval-based approach corresponding to the time slot taken for EV charging is introduced for wind energy conversion and analyzed using different constraints and criteria, including the wind speed averaging time interval, various turbines manufacturers, and standard high-resolution wind speed datasets. A quasi-continuous wind turbine’s output energy is performed using a piecewise recursive approach to measure the EV charging effectiveness. Wind turbine analysis using two years of wind speed data shows that the application of direct wind-to-EV is able to provide sufficient constant power to supply the large-scale charging stations. The results presented in this paper confirm that the potential of direct powering of EV charging stations by wind has merits and that research in this direction is worth pursuing.


Sign in / Sign up

Export Citation Format

Share Document