scholarly journals Harmonic Modeling of a Diode-Clamped Multilevel Voltage Source Converter for Predicting Uncharacteristic Harmonics

2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Tian Hao Huang ◽  
Kuo Lung Lian

In response to the growing demand for medium- and high-power trends, multilevel voltage source converters (VSCs) have been attracting growing considerations. One of the widely used VSCs are the diode-clamped multilevel VSC (DCM-VSC). As these converters proliferate, their harmonic impact may become significant. Nevertheless, a harmonic model for the DCM-VSC is currently lacking in the literature. In this paper, the ABCD matrix, mapping the input harmonics to the output harmonics of DCM-VSC, is derived. As the matrix is formulated in the time-domain, the output harmonics are exact and do not suffer from harmonic truncation errors. As the paper will demonstrate, the derived ABCD matrix can be easily applied to a microgrid system and users can easily predict all the uncharacteristic harmonics when a microgrid is subjected to various conditions of imbalance. In addition to all the results being validated with those of PSCAD/EMTDC, the computation time of the proposed method is in contrast much shorter.

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3097
Author(s):  
Roberto Benato ◽  
Antonio Chiarelli ◽  
Sebastian Dambone Sessa

The purpose of this paper is to highlight that, in order to assess the availability of different HVDC cable transmission systems, a more detailed characterization of the cable management significantly affects the availability estimation since the cable represents one of the most critical elements of such systems. The analyzed case study consists of a multi-terminal direct current system based on both line commutated converter and voltage source converter technologies in different configurations, whose availability is computed for different transmitted power capacities. For these analyses, the matrix-based reliability estimation method is exploited together with the Monte Carlo approach and the Markov state space one. This paper shows how reliability analysis requires a deep knowledge of the real installation conditions. The impact of these conditions on the reliability evaluation and the involved benefits are also presented.


2020 ◽  
Vol 2 (1) ◽  
pp. 1-15
Author(s):  
Sundar Govindasamy ◽  
Ashok Rangaswamy

This paper analyzes the configuration of Static Synchronous Compensator-STATCOM utilizing 48 pulse voltage source converter for reactive force reparation and voltage adjustment in force framework transmission and dispersion systems alongside the advanced development of the STATCOM utilizing 48 pulse VSC, expecting framework subjected to unsettling disturbances of real and reactive power. The 48 Pulse voltage source converter is composed with the guide of four 3-level voltage source converters exchanging at the major recurrence to create a sinusoidal yield voltage with decreased symphonies substance. The outline and computerized recreation of STATCOM has been executed in the MATLAB/Simulink stage. It is strongly evident that the outcome of reactive power reparation and voltage stabilization have been substantially improved by the proposed STATCOM configuration with 48 pulse VSC.


Author(s):  
G. Vamsi ◽  
◽  
P.Kiran Kumar ◽  
G Joga Rao ◽  
◽  
...  

The voltage source converters (VSCs) are the circuits, which convert the power from one form to the other. The application of voltage source converter is vital in HVDC systems. The voltage source converter technology is employed for the smooth operation of any HVDC system. Hence, the HVDC systems based on VSC are gaining importance compared to the other HVDC systems. The starting up process of HVDC system is associated with large value of current, so a proper method of starting is required for the safe operation of the HVDC system. In this paper, a new and novel method is proposed for the smooth starting of the VSC based HVDC system, which will limit the current successfully with high speed operation. Index Terms: Nine level MLI, Control of inverter, Modular Inverter.


2010 ◽  
Vol 61 (1) ◽  
pp. 29-36 ◽  
Author(s):  
Mohamed Khatir ◽  
Sid-Ahmed Zidi ◽  
Samir Hadjeri ◽  
Mohammed-Karim Fellah

Dynamic Performance of a Back-to-Back HVDC Station Based on Voltage Source Converters The recent developments in semiconductors and control equipment have made the voltage source converter based high voltage direct current (VSC-HVDC) feasible. This new DC transmission is known as "HVDC Light or "HVDC Plus by leading vendors. Due to the use of VSC technology and pulse width modulation (PWM) the VSC-HVDC has a number of potential advantages as compared with classic HVDC. In this paper, the scenario of back-to-back VSC-HVDC link connecting two adjacent asynchronous AC networks is studied. Control strategy is implemented and its dynamic performances during disturbances are investigated in MATLAB/Simulink program. The simulation results have shown good performance of the proposed system under balanced and unbalanced fault conditions.


1998 ◽  
Vol 08 (04) ◽  
pp. 483-496 ◽  
Author(s):  
M. N. GITAU ◽  
I. R. SMITH ◽  
J. G. KETTLEBOROUGH

Increases in the occurrence of nonlinear loads have resulted in the need to reduce or minimize the levels of harmonic currents being injected into the power supply. As a consequence, active current waveshaping and pulse-width modulation have now replaced conventional phase-controlled and diode bridge rectifiers in many applications. In this paper, mathematical models are developed for the power circuits of analog controlled single-phase and three-phase voltage source converters, and then used to analyse the performance of current- and voltage-control loops for the converters. Analytical expressions are derived for the gains and time constants of the current and voltage controllers, and it is shown that the bandwidth of the current-loop is a function of the switching frequency, and that of the voltage-loop is a function of the DC-busbar capacitance and the voltage filter cut-off frequency. To illustrate the application of the models, simulation results are presented from investigations into the control of a 5 kW single-phase voltage-source converter and a 100 kW three-phase boost converter.


2020 ◽  
Author(s):  
Ziya Özkan ◽  
Ahmet Masum Hava

In three-phase three-wire (3P3W) voltage-source converter (VSC) systems, utilization of filter inductors with deep saturation characteristics is often advantageous due to the improved size, cost, and efficiency. However, with the use of conventional synchronous frame current control (CSCC) methods, the inductor saturation results in significant dynamic performance loss and poor steady-state current waveform quality. This paper proposes an inverse dynamic model based compensation (IDMBC) method to overcome these performance issues. Accordingly, a review of inductor saturation and core materials is performed, and the motivation on the use of saturable inductors is clarified. Then, two-phase exact modelling of the 3P3W VSC control system is obtained and the drawbacks of CSCC have been demonstrated analytically. Based on the exact modelling, the inverse system dynamic model of the nonlinear system is obtained and employed such that the nonlinear plant is converted to a fictitious linear inductor system for linear current regulators to perform satisfactorily.


2019 ◽  
Vol 55 (3) ◽  
pp. 2931-2941 ◽  
Author(s):  
Hongyang Zhang ◽  
Xiongfei Wang ◽  
Lennart Harnefors ◽  
Hong Gong ◽  
Jean-Philippe Hasler ◽  
...  

2021 ◽  
Vol 5 (1) ◽  
pp. 8
Author(s):  
Cundi Han ◽  
Yiming Chen ◽  
Da-Yan Liu ◽  
Driss Boutat

This paper applies a numerical method of polynomial function approximation to the numerical analysis of variable fractional order viscoelastic rotating beam. First, the governing equation of the viscoelastic rotating beam is established based on the variable fractional model of the viscoelastic material. Second, shifted Bernstein polynomials and Legendre polynomials are used as basis functions to approximate the governing equation and the original equation is converted to matrix product form. Based on the configuration method, the matrix equation is further transformed into algebraic equations and numerical solutions of the governing equation are obtained directly in the time domain. Finally, the efficiency of the proposed algorithm is proved by analyzing the numerical solutions of the displacement of rotating beam under different loads.


Sign in / Sign up

Export Citation Format

Share Document