scholarly journals A Novel Small Peptide Inhibitor of NFκB, RH10, Blocks Oxidative Stress-Dependent Phenotypes in Cancer

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Jessica Gambardella ◽  
Michele Ciccarelli ◽  
Carmine Del Giudice ◽  
Antonella Fiordelisi ◽  
Matteo De Rosa ◽  
...  

Background. The RH domain of GRK5 is an effective modulator of cancer growth through the inhibition of NFκB activity. The aim of this study was to identify the minimum effective sequence of RH that is still able to inhibit tumor growth and could be used as a peptide-based drug for therapy. Methods. Starting from the RH sequence, small peptides were cloned and tested in KAT-4 cells. The effects on NFκB signaling and its dependent phenotypes were evaluated by Western blot, TUNEL assay, proliferation assay, and angiogenesis in vitro. In vivo experiments were performed in KAT-4 xenografts in Balb/c nude mice. Results. A minimum RH ten amino acids long sequence (RH10) was able to interact with IκB, to increase IκB levels, to induce apoptosis, to inhibit KAT4-cell proliferation, NFκB activation, ROS production, and angiogenesis in vitro. In vivo, the peptide inhibited tumor growth in a dose-dependent manner. We also tested its effects in combination with chemotherapeutic drugs and radiotherapy. RH10 ameliorated the antitumor responses to cisplatin, doxorubicin, and ionizing radiation. Conclusion. Our data propose RH10 as a potential peptide-based drug to use for cancer treatment both alone or in combination with anticancer therapies.

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9909
Author(s):  
Carol Haddoub ◽  
Mohamad Rima ◽  
Sandrine Heurtebise ◽  
Myriam Lawand ◽  
Dania Jundi ◽  
...  

Background Montivipera bornmuelleri’s venom has shown immunomodulation of cytokines release in mice and selective cytotoxicity on cancer cells in a dose-dependent manner, highlighting an anticancer potential. Here, we extend these findings by elucidating the sensitivity of murine B16 skin melanoma and 3-MCA-induced murine fibrosarcoma cell lines to M. bornmuelleri’s venom and its effect on tumor growth in vivo. Methods The toxicity of the venom on B16 and MCA cells was assessed using flow cytometry and xCELLigence assays. For in vivo testing, tumor growth was followed in mice after intratumoral venom injection. Results The venom toxicity showed a dose-dependent cell death on both B16 and MCA cells. Interestingly, overexpression of ovalbumin increased the sensitivity of the cells to the venom. However, the venom was not able to eradicate induced-tumor growth when injected at 100 µg/kg. Our study demonstrates a cytotoxic effect of M. bornmuelleri’s venom in vitro which, however, does not translate to an anticancer action in vivo.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4888-4888
Author(s):  
Li Long ◽  
Xia Tong ◽  
Montesa Patawaran ◽  
Lea Aukerman ◽  
Bahija Jallal ◽  
...  

Abstract CD40 is expressed on most B cell malignancies including multiple myeloma and represents an attractive target for antibody therapy. We have generated a novel, highly potent, fully human antagonistic anti-CD40 monoclonal antibody, CHIR-12.12, using XenoMouse® mice (Abgenix, Inc). The antibody can mediate anti-tumor activity potentially by at least two mechanisms: CHIR-12.12 can block CD40-ligand mediated survival signals and it can lyse tumor cells by antibody-dependent cellular cytotoxicity (ADCC). We have previously reported that CHIR-12.12 mediates stronger killing of CD40- and CD20-expressing lymphoma cells than rituximab by ADCC in vitro and significantly inhibits the growth of both rituximab-responsive and rituximab-resistant human lymphoma xenografts in vivo. In this study, we examined in vitro and in vivo efficacy of CHIR-12.12 against human multiple myeloma. The human MM cell line IM-9, which expresses both CD40 and CD20, the target antigen for CHIR-12.12 and rituximab respectively was used for the study. CHIR-12.12 induced lysis of target tumor cells by ADCC in a dose dependent manner reaching maximum cell lysis at 0.1ug/ml concentration. The maximum specific lysis of IM-9 cells by CHIR-12.12 was greater than the lysis induced by rituximab (64% vs 45 %, n=3, p<0.01). In addition, the EC50 of CHIR-12.12 was on average 5.9 picomolar, which was 10-fold lower than the EC50 of rituximab. Greater ADCC by CHIR-12.12 was not due to higher density of CD40 molecules on the target tumor cells compared to CD20 molecules. IM-9 cells expressed 35590 ±8858 CD40 molecules compared to 93783 ± 2247 CD20 molecules. The in vivo CHIR-12.12 efficacy was then evaluated in IM-9 xenograft model. In an un-staged conditional survival model, where treatment began one day after intravenous inoculation of IM-9 tumor cells, CHIR-12.12 significantly prolonged the survival of tumor-bearing mice in a dose-dependent manner with 60% survival in the 0.1 mg/kg CHIR-12.12 treated group and 80% survival in the 1 and 10 mg/kg groups respectively on day 56 (Log Rank Test: P<0.01 and P<0.001, respectively). All animals in the control IgG1 and bortezomib treated groups were terminated between day 18 and day 26 due to severe disease related to tumor development (i.e., hind limb paralysis and significant body weight loss). In a staged subcutaneous model, where treatment began once the tumor volume was 150–200mm3, CHIR-12.12 administered weekly at 0.1, 1 and 10 mg/kg significantly inhibited tumor growth with a tumor volume reduction of 17% (P>0.05), 34% (P<0.01) and 44% (P<0.001) respectively. Bortezomib, when tested at 0.5 mg/kg twice a week did not inhibit tumor growth. At the maximally tolerated dose (MTD) of 1 mg/kg twice a week, bortezomib inhibited tumor growth by 30% (P<0.01). Taken together, these data demonstrate that the anti-CD40 mAb CHIR-12.12 has potent activity against human multiple myeloma in vitro and xenograft models in vivo.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3470-3470 ◽  
Author(s):  
Li Long ◽  
Xia Tong ◽  
Montesa Patawaran ◽  
Sharon L. Aukerman ◽  
Bahija Jallal ◽  
...  

Abstract CD40 is expressed on all B-cell malignancies, including multiple myeloma, and represents an attractive target for antibody therapy. CHIR-12.12 is a fully human, highly potent, IgG1 antagonistic anti-CD40 monoclonal antibody generated using XenoMouse® mice (Abgenix, Inc). CHIR-12.12 can mediate antitumor activity by at least two mechanisms: blocking CD40-ligand-mediated survival signals and killing tumor cells by antibody-dependent cellular cytotoxicity (ADCC). We have previously reported that CHIR-12.12 mediates stronger in vitro killing of CD40+- and CD20+-expressing human non-Hodgkin’s lymphoma and lymphoblastoid B cells by ADCC than rituximab and significantly inhibits the growth of rituximab-responsive (Daudi) and rituximab-resistant (Namalwa) human lymphoma and lymphoblastoid B-cell (IM-9) xenografts in vivo. In this study, we examined the in vitro and in vivo efficacy of CHIR-12.12 against the human multiple myeloma cell line KMS-12-BM. CHIR-12.12 induced lysis of KMS-12-BM cells by ADCC in a dose-dependent manner, reaching maximum cell lysis at 0.1μg/ml with an EC50 of 17.5 pM. CHIR-12.12 efficacy in vivo was evaluated in orthotopic and subcutaneous KMS-12-BM xenograft models. In the staged orthotopic model, tumor cells were delivered intravenously and treatment was initiated 7 days post cell implantation. CHIR-12.12 significantly prolonged the median survival of tumor-bearing mice in a dose-dependent manner, with a median survival of 78 and 98 days in the groups treated with 1 mg/kg and 10 mg/kg CHIR-12.12 weekly, respectively, compared to a median survival time of 68 days in the control IgG1 group (P<0.0001). Bortezomib administered i.v. twice weekly at 0.5 or 1 mg/kg showed no survival benefit. In the staged subcutaneous model, CHIR-12.12 was administered weekly at 1 and 10 mg/kg after the mean tumor volume reached 100mm3. CHIR-12.12 significantly inhibited tumor growth, with a tumor volume reduction of 42% (P<0.05) and 63% (P<0.01), respectively. Bortezomib and melphalan/prednisone did not inhibit KMS-12-BM tumor growth at the doses and schedules reported for other human multiple myeloma xenograft models. Western blot analysis and immunohistochemical staining showed significantly increased levels of cleaved PARP in KMS-12-BM s.c. tumors 7 days after the initiation of CHIR-12.12 treatment, suggesting the induction of cell death by CHIR-12.12. Taken together, these data demonstrate that the anti-CD40 mAb CHIR-12.12 has potent activity against human multiple myeloma cells in vitro and in xenograft models in vivo. Currently CHIR-12.12 is in Phase I clinical trials for the treatment of B-cell malignancies.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3220
Author(s):  
Nina A. Hering ◽  
Verena Liu ◽  
Rayoung Kim ◽  
Benjamin Weixler ◽  
Raoul A. Droeser ◽  
...  

Cholinergic signaling via the muscarinic M3 acetylcholine receptor (M3R) is involved in the development and progression of colorectal cancer (CRC). The present study aimed to analyze the blocking of M3R signaling in CRC using darifenacin, a selective M3R antagonist. Darifenacin effects were studied on HT-29 and SW480 CRC cells using MTT and BrdU assays, Western blotting and real time RT-PCR. In vivo, blocking of M3R was assessed in an orthotopic CRC xenograft BALB/cnu/nu mouse model. M3R expression in clinical tumor specimens was studied by immunohistochemistry on a tissue microarray of 585 CRC patients. In vitro, darifenacin decreased tumor cell survival and proliferation in a dose-dependent manner. Acetylcholine-induced p38, ERK1/2 and Akt signaling, and MMP-1 mRNA expression were decreased by darifenacin, as well as matrigel invasion of tumor cells. In mice, darifenacin reduced primary tumor volume and weight (p < 0.05), as well as liver metastases, compared to controls. High expression scores of M3R were found on 89.2% of clinical CRC samples and correlated with infiltrative tumor border and non-mucinous histology (p < 0.05). In conclusion, darifenacin inhibited components of tumor growth and progression in vitro and reduced tumor growth in vivo. Its target, M3R, was expressed on the majority of CRC. Thus, repurposing darifenacin may be an attractive addition to systemic tumor therapy in CRC patients expressing M3R.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 243-243 ◽  
Author(s):  
Polly R. Pine ◽  
Rena Bahjat ◽  
Betty Chang ◽  
Vanessa Taylor ◽  
Vadim Markovstov ◽  
...  

Abstract Background. Phase 1 clinical studies have shown that an orally bioavailable syk kinase inhibitor, R788/406, is very well tolerated in human volunteers for up to 7 days (and in primates for up to 28 days) at doses achieving concentrations in excess of 5 micromolar (ED50 for in vivo biomarker of syk-inhibition in humans is 1 micromolar). In biochemical kinase assays, R788/406 inhibits syk and FLT3 at less than 10 nM, and in cell-based assays at less than 100 nM. The demonstration of biological activity and excellent tolerability in humans, and the equipotent inhibition of FLT3 and syk kinases in biochemical assays led us to explore the potential for use of R788/406 in a xenograft of a human AML FLT-3ITD mutant cell line. Objective: To evaluate the in vitro and in vivo activity of R788/406 in a human AML FLT3-ITD mutant cell line, MV411, a model system for examination of FLT3 mutant AML. Methods: MV411 cells were treated with R788/406 and evaluated for cell viability and markers of apoptosis (Annexin-V/PI and caspase) by FACS. Cell cycle analysis was performed on cells stained with PI. 5 X 106 MV411 cells harvested in logarithmic phase growth were injected with Matrigel SC in NOD/SCID mice. Treatment with R788/406 began when tumors reached a predetermined size (mean volume of 100 mm3) and continued for 26 days. At sacrifice, tumor xenografts were lysed, immunoprecipitated with anti-FLT-3, and probed with anti-phosphotyrosine 4G10 or anti-FLT-3. Results: R788/406 potently and selectively induced dose-dependent cytotoxicity of MV-411 AML cells in vitro with an ED50 of 20nM. Pretreatment of cells with R788/406 promoted dephosphorylation of constitutively active pFLT3, as well as a reduction of pStat5 and pErk1/2 in the FLT3 signaling cascade. Moreover, R788/406 induced cell cycle arrest in the G1 phase and subsequent apoptosis in MV411 cells in a dose-dependent manner. Twice daily administration of R788/406 to NOD/SCID mice bearing SC MV411 tumors reduced tumor growth significantly in a dose dependent manner. When compared to vehicle controls, daily doses of 40 and 80mg/kg R788/406 resulted in 45% and 82% inhibition of mean tumor volumes, respectively. At study termination mean tumor volumes were 686.90 ± 115.56 and 224.45 ± 49.80 for 40 and 80 mg/kg R788/406-treated animals compared to 1255.48 ± 182.94 for vehicle controls with a final %T/C of -0.4 (range of %T/C throughout study was −7.9 to −0.4). During the study, no significant body weight loss was observed in any of the animals in this study. Ex vivo analyses of subcutaneous tumors from MV411 tumor-bearing mice showed that R788/406 completely inhibited constitutive FLT3 activation and downstream signaling events. Conclusions: R788/406 is well tolerated in humans (and primates) at concentrations well in excess of those that inhibit syk in vivo. Given the equipotent inhibition of syk and FLT3, the in vivo activity against human syk, and the xenograft data reported here, R788/406 may be a promising agent for FLT-3 AML.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Xuxing Shen ◽  
Chao Wu ◽  
Meng Lei ◽  
Qing Yan ◽  
Haoyang Zhang ◽  
...  

AbstractCarfilzomib, a second-generation proteasome inhibitor, has significantly improved the survival rate of multiple myeloma (MM) patients, but its clinical application is still restricted by drug resistance and cardiotoxicity. Here, we identified a novel proteasome inhibitor, D395, and assessed its efficacy in treating MM as well as its cardiotoxicity at the preclinical level. The activities of purified and intracellular proteasomes were measured to determine the effect of D395 on the proteasome. CCK-8 and flow cytometry experiments were designed to evaluate the effects of D395 on cell growth and apoptosis. The effects of D395 and carfilzomib on serum enzyme activity, echocardiography features, cardiomyocyte morphology, and hERG channels were also compared. In our study, D395 was highly cytotoxic to MM cell lines and primary MM cells but not normal cells, and it was well tolerated in vivo. Similar to carfilzomib, D395 inhibited osteoclast differentiation in a dose-dependent manner. In particular, D395 exhibited lower cardiotoxicity than carfilzomib in all experiments. In conclusion, D395 is a novel irreversible proteasome inhibitor that has remarkable anti-MM activity and mild cardiotoxicity in vitro and in vivo.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 386
Author(s):  
Tung-Hu Tsai ◽  
Yu-Jen Chen ◽  
Li-Ying Wang ◽  
Chen-Hsi Hsieh

This study was performed to evaluate the interaction between conventional or high-dose radiotherapy (RT) and the pharmacokinetics (PK) of regorafenib in concurrent or sequential regimens for the treatment of hepatocellular carcinoma. Concurrent and sequential in vitro and in vivo studies of irradiation and regorafenib were designed. The interactions of RT and regorafenib in vitro were examined in the human hepatoma Huh-7, HA22T and Hep G2 cell lines. The RT–PK phenomenon and biodistribution of regorafenib under RT were confirmed in a free-moving rat model. Regorafenib inhibited the viability of Huh-7 cells in a dose-dependent manner. Apoptosis in Huh-7 cells was enhanced by RT followed by regorafenib treatment. In the concurrent regimen, RT decreased the area under the concentration versus time curve (AUC)regorafenib by 74% (p = 0.001) in the RT2 Gy × 3 fraction (f’x) group and by 69% (p = 0.001) in the RT9 Gy × 3 f’x group. The AUCregorafenib was increased by 182.8% (p = 0.011) in the sequential RT2Gy × 1 f’x group and by 213.2% (p = 0.016) in the sequential RT9Gy × 1 f’x group. Both concurrent regimens, RT2Gy × 3 f’x and RT9Gy × 3 f’x, clearly decreased the biodistribution of regorafenib in the heart, liver, lung, spleen and kidneys, compared to the control (regorafenib × 3 d) group. The concurrent regimens, both RT2Gy × 3 f’x and RT9Gy × 3 f’x, significantly decreased the biodistribution of regorafenib, compared with the control group. The PK of regorafenib can be modulated both by off-target irradiation and stereotactic body radiation therapy (SBRT).


2007 ◽  
Vol 53 (3) ◽  
pp. 380-390 ◽  
Author(s):  
Pious Thomas ◽  
Sima Kumari ◽  
Ganiga K. Swarna ◽  
T.K.S. Gowda

Fourteen distinct bacterial clones were isolated from surface-sterilized shoot tips (~1 cm) of papaya (Carica papaya L. ‘Surya’) planted on Murashige and Skoog (MS)-based papaya culture medium (23/50 nos.) during the 2–4 week period following in vitro culturing. These isolates were ascribed to six Gram-negative genera, namely Pantoea ( P. ananatis ), Enterobacter ( E. cloacae ), Brevundimonas ( B. aurantiaca ), Sphingomonas , Methylobacterium ( M. rhodesianum ), and Agrobacterium ( A. tumefaciens ) or two Gram-positive genera, Microbacterium ( M. esteraromaticum ) and Bacillus ( B. benzoevorans ) based on 16S rDNA sequence analysis. Pantoea ananatis was the most frequently isolated organism (70% of the cultures) followed by B. benzoevorans (13%), while others were isolated from single stocks. Bacteria-harboring in vitro cultures often showed a single organism. Pantoea, Enterobacter, and Agrobacterium spp. grew actively on MS-based normal papaya medium, while Microbacterium, Brevundimonas, Bacillus, Sphingomonas, and Methylobacterium spp. failed to grow in the absence of host tissue. Supplying MS medium with tissue extract enhanced the growth of all the organisms in a dose-dependent manner, indicating reliance of the endophyte on its host. Inoculation of papaya seeds with the endophytes (20 h at OD550 = 0.5) led to delayed germination or slow seedling growth initially. However, the inhibition was overcome by 3 months and the seedlings inoculated with Pantoea, Microbacterium, or Sphingomonas spp. displayed significantly better root and shoot growths.


2014 ◽  
Vol 26 (8) ◽  
pp. 1084 ◽  
Author(s):  
Yu-Ting Shen ◽  
Yue-Qiang Song ◽  
Xiao-Qin He ◽  
Fei Zhang ◽  
Xin Huang ◽  
...  

Meiosis produces haploid gametes for sexual reproduction. Triphenyltin chloride (TPTCL) is a highly bioaccumulated and toxic environmental oestrogen; however, its effect on oocyte meiosis remains unknown. We examined the effect of TPTCL on mouse oocyte meiotic maturation in vitro and in vivo. In vitro, TPTCL inhibited germinal vesicle breakdown (GVBD) and first polar body extrusion (PBE) in a dose-dependent manner. The spindle microtubules completely disassembled and the chromosomes condensed after oocytes were exposed to 5 or 10 μg mL–1 TPTCL. γ-Tubulin protein was abnormally localised near chromosomes rather than on the spindle poles. In vivo, mice received TPTCL by oral gavage for 10 days. The general condition of the mice deteriorated and the ovary coefficient was reduced (P < 0.05). The number of secondary and mature ovarian follicles was significantly reduced by 10 mg kg–1 TPTCL (P < 0.05). GVBD decreased in a non-significant, dose-dependent manner (P > 0.05). PBE was inhibited with 10 mg kg–1 TPTCL (P < 0.05). The spindles of in vitro and in vivo metaphase II oocytes were disassembled with 10 mg kg–1 TPTCL. These results suggest that TPTCL seriously affects meiotic maturation by disturbing cell-cycle progression, disturbing the microtubule cytoskeleton and inhibiting follicle development in mouse oocytes.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Ting-Yeu Dai ◽  
Chih-Hua Wang ◽  
Kun-Nan Chen ◽  
I-Nung Huang ◽  
Wei-Sheng Hong ◽  
...  

We assayed the effects of velvet antler (VA) of Formosan sambar deer (Cervus unicolor swinhoei) and its extracts on the anti-infective activity against pathogenicStaphylococcus aureus in vitroandin vivoin this study.In vitrodata indicated that the VA extracts stimulated the proliferation of resting splenocytes and macrophages in a dose-dependent manner up to the highest concentration used (150 μg mL−1). The production of proinflammatory cytokines (TNF-α, IL-6, IL-12) by lipoteichoic acid was significantly suppressed after being cocultured with the VA extracts in a dose-dependent manner. Animal test inS. aureus-infected mice demonstrated that the numbers of bacteria determined in the kidneys and peritoneal lavage fluid ofS. aureus-infected mice were significantly higher than those found in the same organs of mice pretreated with the VA samples. Moreover, the highly enhanced phagocytic activity of macrophages was further verified afterin vitrotreatment with the VA samples. The protective mechanisms of the VA samples might include an immune enhancer and an inflammatory cytokine suppressor.


Sign in / Sign up

Export Citation Format

Share Document