scholarly journals Study on Cooling Effect and Pavement Performance of Thermal-Resistant Asphalt Mixture

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Jiarong Wang ◽  
Zhengqi Zhang ◽  
Datong Guo ◽  
Cheng Xu ◽  
Ke Zhang

To reduce the temperature of asphalt pavement and improve the antirutting performance of asphalt mixture, a thermal-resistant asphalt mixture (TRAM) was produced, in which a certain proportion of mineral aggregate was replaced by ceramic (CE) or floating beads (FB) featuring low thermal conductivity. Firstly, a parallel plate test was developed to test the thermal conductivity of asphalt mixture added with different thermal-resistant materials. Secondly, the illumination test system was designed to study the visual cooling effect of different TRAM by imitating the natural environment. Finally, the effect of different thermal-resistant materials on asphalt pavement performance was evaluated. The results show that the addition of thermal-resistant materials can reduce the thermal conductivity and the temperature of asphalt mixture. The cooling effect of CE75 and CE100 (coarse aggregate substituted by 75% and 100% CE, respectively) is superior to other aggregates. The temperature reduction rates of CE75 and CE100 reache 6.6°C and 6.8°C, respectively. For FB50 and FB75 (fine aggregate substituted with 50 and 75% FB, respectively), the cooling effect of them reaches 3.9°C and 4.5°C, respectively. In addition, the CE and FB can improve the antirutting performance of asphalt mixture by reducing the temperature inside the pavement. The high-temperature performance of CE75 and FB75 is the best. With the increase of thermal resistance materials, the low-temperature cracking resistance of asphalt mixture decreases gradually. The failure strain of mixture added with 100% thermal resistance materials is close to the lower limit of Chinese specification. The water stability of different TRAM changes with various test methods. Taking into account the results of pavement performance and the cooling effect, the substitution proportion of CE and FB for TRAM is proposed as 50%∼75%, respectively.

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Haibin Deng ◽  
Deyi Deng ◽  
Yinfei Du ◽  
Xinmin Lu

This study aims to enhance the thermal resistance of asphalt mixture to cool asphalt pavement. Four kinds of asphalt mixtures were prepared by replacing basalt aggregate and limestone mineral powder with shale ceramsite (SC) and fly ash cenosphere (FAC), respectively. A series of experiments, including environment scanning electron microscope test, thermophysical parameter test, indoor irradiation test, shear strength test, and rutting test, were performed to verify the purpose of this study. The results show that using low-density SC and FAC could produce lightweight asphalt mixtures, which had lower thermal conductivity than control asphalt mixture. The indoor irradiation test shows that the resultant asphalt mixtures had lower temperatures at the depth of lower than 4 cm. The addition of SC had a negative effect on the shear strength and dynamic stability of asphalt mixture. However, the two indicators increased due to the addition of FAC. The results presented in this study indicate that it is feasible to use lightweight aggregate to prepare low-thermal-conductivity asphalt mixture and use this kind of asphalt mixture to cool asphalt pavement.


2018 ◽  
Vol 16 (1_suppl) ◽  
pp. 112-118 ◽  
Author(s):  
Fuming Liu ◽  
Aixia Dong ◽  
Chaoqun Liu ◽  
Wenqing Wu

Introduction: In this study, the asphalt mixture (porosity <2%) was tested for use between the upper and middle layers of the asphalt pavement to improve its interlayer structure and to enhance its related waterproof and anti-cracking ability. Methods: Considering the weather characteristics and traffic conditions in Jiangxi Province, appropriate raw materials were selected. Based on the technical indexes of the raw materials, expected porosity (<2%), and AC-5 standard for the asphalt mixture, experiments were conducted to determine the best gradation range of the waterproof and anti-cracking layer, and to obtain the optimum amount of the asphalt and fiber used based on Marshall tests. Results: The high-temperature rutting test, low-temperature cracking test, and water stability test were conducted to evaluate the pavement performance of the waterproof and anti-cracking layer. Conclusions: A waterproof and anti-cracking layer was added between the upper and middle layers of the asphalt pavement, which has excellent performance for avoiding cracks and water damage.


Coatings ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1065
Author(s):  
Nanxiang Zheng ◽  
Junan Lei ◽  
Shoubin Wang ◽  
Zhifeng Li ◽  
Xiaobao Chen

To reduce the temperature of asphalt pavement in summer, and alleviate the urban heat island effect, a comprehensive method of combining a heat reflective coating and large void asphalt pavement was proposed. Using the developed coating cooling test equipment, the cooling effect of the coating on a large void asphalt mixture was studied in six different proportions, four different colors, and four different dosages, and the durability of the coating was verified by abrasion tests. Finally, the best dosage of the coating was recommended through an adhesion test of the coating, and a water permeability and anti-skid performance test of the pavement. The results show that the reflectivity of the coating can be improved by adding functional fillers, of titanium dioxide and floating beads, into the coating. The order by reflectivity and cooling effect of the four color coatings was green > red > gray > blue, and the maximum cooling value of the green coating reached 9.7 ℃. The cooling performance of the coating decreased with the increase of wear time, and the rate of decrease was fast, then slow, and finally tended to be stable after 20,000 times wear. The coating reduced the anti-skid performance and the water permeability coefficient of large void asphalt pavement, but still maintained a high level. The green coating with 15% titanium dioxide and 10% floating beads is recommended as the cooling coating for large void asphalt pavement, and its dosage should be controlled at about 0.4–0.8 kg/m2.


Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1427 ◽  
Author(s):  
Guoping Qian ◽  
Shunjun Li ◽  
Huanan Yu ◽  
Xiangbing Gong

The slippage damage caused by weak interlaminar bonding between cement concrete deck and asphalt surface is a serious issue for bridge pavement. In order to evaluate the interlaminar bonding of cement concrete bridge deck and phosphorous slag (PS) asphalt pavement, the shear resistance properties of the bonding layer structure were studied through direct shear tests. The impact of PS as a substitute of asphalt mixture aggregate, interface characteristics, normal pressure, waterproof and cohesive layer types, temperature and shear rate on the interlaminar bonding properties were analyzed. The test results indicated that the interlaminar bonding of bridge deck pavement is improved after asphalt mixture fine aggregate was substituted with PS and PS powder, and the result indicated that the shear strength of grooved and aggregate-exposed interfaces is significantly higher than untreated interface, the PS micro-powder or anti-stripping agent can also improve the adhesion between layers when mixed into SBS asphalt. This study provided important theoretical and practical guidance for improving the shear stability of bridge deck pavement.


2010 ◽  
Vol 168-170 ◽  
pp. 1145-1148 ◽  
Author(s):  
Xin Qiu ◽  
Lan Yun Chen ◽  
Liang Xue

The paper investigates the effects of different concentrations of crumb rubber (CR) on the pavement performance of the conventional penetration-grade 80/100 bitumen and the dense-graded wearing course asphalt mixture (AC16). A wet process and 0.6mm size CR were used and the control variables included three types of CR of concentrations 5%,10% and 15% by total weight of binder. The evaluations were twofold. Firstly, a comparison of the basic and rheological properties of those modified and unmodified binders was conducted. Secondly, a comparison of the resistance to moisture damage, low temperature cracking and permanent deformation of the AC16 and CR modified AC16 was performed. The results show that all the CR modified binders and mixtures are found to have improved performance as evaluated by a series of laboratory tests. In addition, among three CR concentrations, AC16 modified with 10%CR by total weight of binder exhibits the most satisfactory performance properties with respect to the resistance to moisture damage, permanent deformation and low temperature cracking.


2014 ◽  
Vol 638-640 ◽  
pp. 1166-1170 ◽  
Author(s):  
Meng Hui Hao ◽  
Pei Wen Hao

Natural mineral fiber with good performances of mechanical properties and environmentally friendly, pollution-free especially have gradually aroused extensive concern. In order to improve the quality of asphalt pavement, explore the applicability of nature basalt fiber in enhanced asphalt mixture performance, this paper investigates two typical asphalt mixtures and contrastive studies pavement performance of asphalt mixture by high temperature stability, water stability, low temperature anti-cracking and fatigue performance between basalt fiber modified asphalt mixture and base asphalt mixture, and then study the basic principle of fiber reinforcing asphalt mixture. The research show that basalt fiber modified asphalt mixture has a better pavement performance than base asphalt mixture, its dynamic stability is 1.6 times than base asphalt mixture, low temperature anti-cracking performance increased by more 25% and fatigue life is more 2 times than base asphalt mixture. And the basalt fiber can be used in the road engineering as an additive material that enhances the comprehensive performance of asphalt pavement.


2013 ◽  
Vol 361-363 ◽  
pp. 1625-1628
Author(s):  
Zhao Sheng Li ◽  
Yi Qiu Tan

Establish the mechanical model of asphalt pavement low-temperature cracking, analysis the factors leading to cracking. The factors such as shrinkage coefficient of asphalt pavementtemperature stresspavement structure combination forms and temperature contribution affect the asphalt pavement on cracking behavior. Study the effect of aggregate gradation type on asphalt mixture temperature shrinkage coefficient, analyze shows that in case of the same skeleton type, the smaller the average particle size of aggregate is, the larger low-temperature shrinkage deformation of mixture is; increasing the amount of coarse aggregate can form the dense structure of skeletonreduce the shrinkage coefficient at low temperature and improve the low-temperature crack resistance ability of asphalt mixture.


2012 ◽  
Vol 178-181 ◽  
pp. 1361-1364
Author(s):  
Shi Bin Ma ◽  
Li Jie Wang ◽  
Guo Qiang Zhang

The main purpose of recycling is to reuse existing pavement material. First this paper reviews the necessary, feasibility and mechanistic analysis of recycled asphalt mixture, then summarizes the findings of a laboratory study to characterize and design recycled asphalt concrete mixtures using different tests. The laboratory tests carried out on the material were conventional test methods including unconfined compressive strength, cleavage strength, resilient modulus and shrinkage properties tests. The results of the laboratory can be taken as reference in design, engineering and further research.


2012 ◽  
Vol 509 ◽  
pp. 123-127
Author(s):  
Shao Peng Wu ◽  
Pei Qiang Cui ◽  
Deng Feng Zhang

The property of aggregate has a significant effect on the performance of asphalt mixture because of its high proportion. Asphalt mixture prepared by some kind of aggregate cause the inadequate compaction problem, which results in moisture damage due to its large air void. Limestone manufactured sand is considered as one of the useful solution to overcome the compaction problem. In this paper, fine aggregate is substituted by different proportion of limestone manufactured sand (LMS). The effect of replacement ratio on volume properties and pavement performance is studied. The results show that the limestone manufactured sand can improve the pavement performance and is benefit to the compaction of andesite asphalt mixture. Furthermore, this research also provided some valuable parameters for guiding the pavement construction in the future.


2020 ◽  
Vol 5 (2) ◽  
pp. 20 ◽  
Author(s):  
Hilde Soenen ◽  
Stefan Vansteenkiste ◽  
Patricia Kara De Maeijer

Moisture susceptibility is still one of the primary causes of distress in flexible pavements, reducing the pavements’ durability. A very large number of tests are available to evaluate the susceptibility of a binder aggregate combination. Tests can be conducted on the asphalt mixture, either in a loose or compacted form, or on the individual components of an asphalt pavement. Apart from various mechanisms and models, fundamental concepts have been proposed to calculate the thermodynamic tendency of a binder aggregate combination to adhere and/or debond under wet conditions. The aim of this review is to summarize literature findings and conclusions, regarding these concepts as carried out in the CEDR project FunDBits. The applied test methods, the obtained results, and the validation or predictability of these fundamental approaches are discussed.


Sign in / Sign up

Export Citation Format

Share Document