scholarly journals Prevalence and Antibiotic Resistance of Listeria monocytogenes Isolated from Ready-to-Eat Foods in Turkey

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Pınar Şanlıbaba ◽  
Başar Uymaz Tezel ◽  
Gürcü Aybige Çakmak

The aim of the present study was the determination of the prevalence and antibiotic resistance of L. monocytogenes in ready-to-eat (RTE) foods in Ankara, Turkey. In order to detect and isolate L. monocytogenes from 201 RTE food samples, the EN ISO 11290:1 method was used. All isolates were identified using the polymerase chain reaction. The strains were also confirmed by the detection of the hemolysin gene (hlyA). The overall prevalence of L. monocytogenes was 8.5% among the food samples. Seventeen L. monocytogenes strains were examined by the disk diffusion assay for their resistance to 23 antibiotics. All strains were susceptible to erythromycin, clarithromycin, streptomycin, gentamicin, vancomycin, imipenem, trimethoprim, and chloramphenicol, while all strains were resistant to nalidixic acid, ampicillin, penicillin G, linezolid, and clindamycin. The higher resistance was found against oxacillin (94.1%), kanamycin (76.5%), levofloxacin (70.6%), and teicoplanin (64.7%), followed by amoxicillin/clavulanic acid (53.0%), rifampicin (47.1%), and ciprofloxacin (35.3%). A lower incidence of resistance was observed against tetracycline (5.9%), meropenem (5.9%), and trimethoprim/sulfamethoxazole (17.7%). All isolates were multidrug resistant showing resistance to at least three antibiotic classes. High L. monocytogenes prevalence among analyzed RTE foods represents a high risk for public health. Our findings show a high prevalence of L. monocytogenes in RTE foods in Turkey. More effective control strategies for L. monocytogenes are needed to reduce both prevalence and resistance of L. monocytogenes in Turkish RTE foods.

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ahmed A. Baz ◽  
Elsayed K. Bakhiet ◽  
Usama Abdul-Raouf ◽  
Ahmed Abdelkhalek

Abstract Background Infections in communities and hospitals are mostly caused by Staphylococcus aureus strains. This study aimed to determine the prevalence of five genes (SEA, SEB, SEC, SED and SEE) encoding staphylococcal enterotoxins in S. aureus isolates from various clinical specimens, as well as to assess the relationship of these isolates with antibiotic susceptibility. Traditional PCR was used to detect enterotoxin genes, and the ability of isolates expressing these genes was determined using Q.RT-PCR. Results Overall; 61.3% (n = 46) of the samples were positive for S. aureus out of 75 clinical specimens, including urine, abscess, wounds, and nasal swabs. The prevalence of antibiotic resistance showed S. aureus isolates were resistant to Nalidixic acid, Ampicillin and Amoxicillin (100%), Cefuroxime (94%), Ceftriaxone (89%), Ciprofloxacin (87%), Erythromycin and Ceftaxime (85%), Cephalexin and Clarithromycin (83%), Cefaclor (81%), Gentamicin (74%), Ofloxacin (72%), Chloramphenicol(59%), Amoxicillin/Clavulanic acid (54%), while all isolates sensitive to Imipinem (100%). By employing specific PCR, about 39.1% of isolates were harbored enterotoxin genes, enterotoxin A was the most predominant toxin in 32.6% of isolates, enterotoxin B with 4.3% of isolates and enterotoxin A and B were detected jointly in 2.1% of isolates, while enterotoxin C, D and E weren’t detected in any isolate. Conclusion This study revealed a high prevalence of S. aureus among clinical specimens. The isolates were also multidrug resistant to several tested antibiotics. Enterotoxin A was the most prevalent gene among isolates. The presence of antibiotic resistance and enterotoxin genes may facilitate the spread of S. aureus strains and pose a potential threat to public health.


2018 ◽  
Vol 69 (4) ◽  
pp. 915-920
Author(s):  
Petronela Cristina Chiriac ◽  
Vladimir Poroch ◽  
Alina Mihaela Pascu ◽  
Mircea Daniel Hogea ◽  
Ileana Antohe ◽  
...  

The antibiotic resistance of microorganisms involved in pediatric infections represents a significant cause of healthcare-associated infections (HAIs), and is also a matter of management, requiring specific intervention. The aim of the study was to evaluate the efficacy of some antibiotic molecules on pathogens isolated from patients admitted in a pediatric hospital. We carried out a descriptive study on a group of 411 patients admitted to the Sf. MariaClinical Emergency Hospital for Children Iasi, between January 1st and March 31st, 2016. Bacterial infections were most prevalent in the age group of 0-1 year (54.98% of the total isolates). Most affected by multidrug-resistant bacterial infections services were: general pediatrics (24.08% of the total isolates), then the intensive care unit (19.95%), surgical wards (14.84%), and acute therapy (11.43%). The germs were isolated from pathological samples: most often pus (23.85%), hypo-pharyngeal aspiration (21.65%), conjunctival secretion (12.42%), and ear secretion (9.48%). Penicillin G and oxacillin were inefficient in 30.26% of the Staphylococcus aureus strains, while erythromycin in 18.42%. Antibiotic resistance of Streptococcus pneumoniae was observed for penicillin G in 7.14% of the strains, while for erythromycin in 13.09%. Klebsiella pneumoniae strains were resistant to amoxicillin + clavulanic acid in 35.85% of the cases, and to cefuroxime, ceftazidime, ceftriaxone, cefepime in 33.96%. Our study highlighted that Staphylococcus aureus was resistant to penicillin G and oxacillin in more than one-third of the isolates, Streptococcus pneumoniae was resistant to penicillin G and erythromycin, and Klebsiella pneumoniae to amoxicillin + clavulanic acid and 1st, 2nd and 3rd generation cephalosporins. Continuing antibioresistance monitoring is crucial in order to promote appropriate guidelines in antibiotic prescription, which could result in decreasing HAIs� rates.


Pathogens ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 607
Author(s):  
Nadeem Ullah ◽  
Ling Hao ◽  
Jo-Lewis Banga Ndzouboukou ◽  
Shiyun Chen ◽  
Yaqi Wu ◽  
...  

Rifampicin (RIF) is one of the most important first-line anti-tuberculosis (TB) drugs, and more than 90% of RIF-resistant (RR) Mycobacterium tuberculosis clinical isolates belong to multidrug-resistant (MDR) and extensively drug-resistant (XDR) TB. In order to identify specific candidate target proteins as diagnostic markers or drug targets, differential protein expression between drug-sensitive (DS) and drug-resistant (DR) strains remains to be investigated. In the present study, a label-free, quantitative proteomics technique was performed to compare the proteome of DS, RR, MDR, and XDR clinical strains. We found iniC, Rv2141c, folB, and Rv2561 were up-regulated in both RR and MDR strains, while fadE9, espB, espL, esxK, and Rv3175 were down-regulated in the three DR strains when compared to the DS strain. In addition, lprF, mce2R, mce2B, and Rv2627c were specifically expressed in the three DR strains, and 41 proteins were not detected in the DS strain. Functional category showed that these differentially expressed proteins were mainly involved in the cell wall and cell processes. When compared to the RR strain, Rv2272, smtB, lpqB, icd1, and folK were up-regulated, while esxK, PPE19, Rv1534, rpmI, ureA, tpx, mpt64, frr, Rv3678c, esxB, esxA, and espL were down-regulated in both MDR and XDR strains. Additionally, nrp, PPE3, mntH, Rv1188, Rv1473, nadB, PPE36, and sseA were specifically expressed in both MDR and XDR strains, whereas 292 proteins were not identified when compared to the RR strain. When compared between MDR and XDR strains, 52 proteins were up-regulated, while 45 proteins were down-regulated in the XDR strain. 316 proteins were especially expressed in the XDR strain, while 92 proteins were especially detected in the MDR strain. Protein interaction networks further revealed the mechanism of their involvement in virulence and drug resistance. Therefore, these differentially expressed proteins are of great significance for exploring effective control strategies of DR-TB.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Justine Fri ◽  
Henry A. Njom ◽  
Collins N. Ateba ◽  
Roland N. Ndip

Thirty-three (33) isolates of methicillin-resistant Staphylococcus aureus (MRSA) from healthy edible marine fish harvested from two aquaculture settings and the Kariega estuary, South Africa, were characterised in this study. The phenotypic antimicrobial susceptibility profiles to 13 antibiotics were determined, and their antibiotic resistance determinants were assessed. A multiplex PCR was used to determine the epidemiological groups based on the type of SCCmec carriage followed by the detection of staphylococcal enterotoxin-encoding genes sea-sed and the Panton Valentine leucocidin gene (pvl). A high antibiotic resistance percentage (67–81%) was observed for Erythromycin, Ampicillin, Rifampicin, and Clindamycin, while maximum susceptibility to Chloramphenicol (100%), Imipenem (100%), and Ciprofloxacin (94%) was recorded. Nineteen (58%) of the MRSA strains had Vancomycin MICs of ≤2 μg/mL, 4 (12%) with MICs ranging from 4–8 μg/mL, and 10 (30%) with values ≥16 μg/mL. Overall, 27 (82%) isolates were multidrug-resistant (MDR) with Erythromycin-Ampicillin-Rifampicin-Clindamycin (E-AMP-RIP-CD) found to be the dominant antibiotic-resistance phenotype observed in 4 isolates. Resistance genes such as tetM, tetA, ermB, blaZ, and femA were detected in two or more resistant strains. A total of 19 (58%) MRSA strains possessed SCCmec types I, II, or III elements, characteristic of healthcare-associated MRSA (HA-MRSA), while 10 (30%) isolates displayed SCCmec type IVc, characteristic of community-associated MRSA (CA-MRSA). Six (18%) of the multidrug-resistant strains of MRSA were enterotoxigenic, harbouring the see, sea, or sec genes. A prevalence of 18% (6/33) was also recorded for the luk-PVL gene. The findings of this study showed that marine fish contained MDR-MRSA strains that harbour SCCmec types, characteristic of either HA-MRSA or CA-MRSA, but with a low prevalence of enterotoxin and pvl genes. Thus, there is a need for continuous monitoring and implementation of better control strategies within the food chain to minimise contamination of fish with MDR-MRSA and the ultimate spread of the bug.


2019 ◽  
Vol 82 (11) ◽  
pp. 1857-1863 ◽  
Author(s):  
ZAHRA S. AL-KHAROUSI ◽  
NEJIB GUIZANI ◽  
ABDULLAH M. AL-SADI ◽  
ISMAIL M. AL-BULUSHI

ABSTRACT Enterobacteria may gain antibiotic resistance and be potent pathogens wherever they are present, including in fresh fruits and vegetables. This study tested the antibiotic resistance of enterobacteria isolated from 13 types of local and imported fresh fruits and vegetables (n = 105), using the standard Kirby-Bauer disk diffusion method. Phenotypic and genotypic characterizations of AmpC β-lactamases were determined in cefoxitin-resistant isolates. Ten percent of the enterobacteria tested (n = 88) were pansusceptible, 74% were resistant to at least one antibiotic, and 16% were multidrug resistant. Enterobacteria isolates showed the highest antibiotic resistance against ampicillin (66%), cephalothin (57%), amoxicillin–clavulanic acid (33%), cefoxitin (31%), tetracycline (9%), nalidixic acid (7%), trimethoprim (6%), and kanamycin (5%). Three isolates showed intermediate resistance to the clinically important antibiotic imipenem. Escherichia coli isolated from lettuce exhibited multidrug resistance against five antibiotics. Fifteen isolates were confirmed to have AmpC β-lactamase, using the inhibitor-based test and the antagonism test; the latter test confirmed that the enzyme was an inducible type. Four types of ampC β-lactamase genes (CIT, EBC, FOX, and MOX) were detected in eight isolates: four Enterobacter cloacae isolates and one isolate each of Citrobacter freundii, Enterobacter asburiae, Enterobacter hormaechei, and Enterobacter ludwigii. It was concluded that fresh fruits and vegetables might play a role as a source or vehicle for transferring antibiotic-resistant bacteria that might spread to other countries through exportation. The clinically significant AmpC β-lactamase was rarely documented in the literature on bacteria isolated from fruits and vegetables, and to our knowledge, this is the first report on the detection of an inducible type in such commodities.


2019 ◽  
Vol 83 (3) ◽  
pp. 460-466
Author(s):  
GUANGZHU YANG ◽  
SHUHONG ZHANG ◽  
YUANBIN HUANG ◽  
QINGHUA YE ◽  
JUMEI ZHANG ◽  
...  

ABSTRACT Non-O157 Shiga toxin–producing Escherichia coli (STEC) strains are significant foodborne pathogens that can cause acute diarrhea in humans. This study was conducted to investigate the contamination by non-O157 STEC in different types of food sold at retail markets in the People's Republic of China and to characterize non-O157 STEC strains. From May 2012 to April 2014, 1,200 retail food samples were collected from markets in 24 cities in China. Forty-four non-O157 isolates were recovered from 43 STEC-positive samples. Of the isolates, 22 and 19 carried the stx1 and stx2 genes, respectively, and 3 harbored both stx1 and stx2. stx1a and stx2a were the most prevalent stx subtypes. Other virulence genes, ent, hlyA, astA, eae, espB, iha, subAB, and tia, were commonly detected. Diverse O serogroups were identified among these isolates. Multilocus sequence typing indicated the high genetic diversity of the isolates. Thirty-two sequence types (STs) were identified among the 44 isolates, with ST383 (9.09%), ST134 (6.82%), and ST91 (6.82%) the most prevalent. Nine new STs were found. The isolates had a high prevalence of resistance to cephalothin, ampicillin, tetracycline, trimethoprim-sulfamethoxazole, nalidixic acid, streptomycin, and chloramphenicol. Twenty isolates (45.45%) were resistant to at least three antibiotics. This study provides updated surveillance data for non-O157 STEC isolates from foods sold at retail markets. Virulent and multidrug-resistant non-O57 STEC strains were isolated from all types of food. Our findings highlight the need for increased monitoring of non-O157 STEC in retail foods. HIGHLIGHTS


2012 ◽  
Vol 60 (2) ◽  
pp. 189-197 ◽  
Author(s):  
Osman Tel ◽  
Özkan Aslantaş ◽  
Oktay Keskin ◽  
Ebru Yilmaz ◽  
Cemil Demir

In this study,Staphylococcus aureusstrains (n = 110) isolated from seven ewe flocks in Sanliurfa, Turkey were screened for antibiotic resistance and biofilmforming ability as well as for genes associated with antibiotic resistance and biofilm-forming ability. All isolates were found to be susceptible to oxacillin, gentamicin, clindamycin, cefoxitin, tetracycline, vancomycin, amoxicillin-clavulanic acid, ciprofloxacin and sulphamethoxazole-trimethoprim. The percent proportions of strains resistant to penicillin G, ampicillin and erythromycin were 27.2% (n = 30), 25.4% (n = 28) and 6.3% (n = 7), respectively. Regarding the antibiotic resistance genes, 32 (29%) isolates carried theblaZ and 8 (7.2%) theermC gene. Other resistance genes were not detected in the isolates. All isolates showed biofilm-forming ability on Congo red agar (CRA), while 108 (98.18%) and 101 (91.81%) of them were identified as biofilm producers by the use of standard tube (ST) and microplate (MP) methods, respectively. All isolates carried theicaA andicaD genes but none of them harboured thebapgene. The results demonstrated thatS. aureusisolates from gangrenous mastitis were mainly resistant to penicillins (which are susceptible to the staphylococcal beta-lactamase enzyme), and less frequently to erythromycin. Furthermore, all of theS. aureusisolates produced biofilm which was considered a potential virulence factor in the pathogenesis of staphylococcal mastitis.


2016 ◽  
Vol 118 (8) ◽  
pp. 2068-2075 ◽  
Author(s):  
Sana Ilyas ◽  
Muhammad Usman Qamar ◽  
Muhammad Hidayat Rasool ◽  
Nazia Abdulhaq ◽  
Zeeshan Nawaz

Purpose – The purpose of this paper is to evaluate the frequency and antimicrobial susceptibility pattern of pathogens present in ready-to-eat salads available at a local market. Design/methodology/approach – A 100 salad samples were collected aseptically. Each sample (25 g) was homogenized in 225 ml of sterile peptone water and was serially diluted up to 1×106. Dilutions were inoculated on nutrient agar by surface spread plate technique. Aerobic colony count (ACC) was estimated by counting the colonies. Bacterial isolates were cultured on blood and MacConkey agar and identified on the basis of their morphology, culture characteristics and confirmed by API 20E and 20NE. Antimicrobial susceptibility was determined as per CLSI 2014. Findings – ACC range was 1.1×103 cfu/g to 5.8×109 cfu/g. Among these the highest ACC was found in channa chat (4.9×104 to 5.8×109 cfu/g). A total of 127 microorganisms were identified; 73 were gram negative rods (GNRs) and 24 were gram positive cocci (GPC). Among GNRs; Klebsiella spp. (n=18) was the predominant whereas among GPC, Staphylococcus aureus (n=6) were the chief pathogen. Klebsiella spp. showed 100 percent resistance to ampicillin, 89-78 percent to amoxicillin/clavulanic acid and 33 percent to imipenem, however, Enterobacter spp. were resistant to ampicillin (100 percent) amoxicillin/clavulanic acid (77 percent) and imipenem (23 percent). Staphylococcus aureus showed resistance to co-amoxiclav (83 percent) and penicillin (75 percent). Practical implications – This study revealed that effective control measures must been implemented and respected by throughout the entire food chain and better surveillance studies should be performed at national level to reduce the spread of bacteria by fresh salads. Originality/value – This paper explore the high prevalence of multidrug-resistant pathogens in different salads and most of the salads were found to be unhygienic for consumption.


2021 ◽  
Vol 319 ◽  
pp. 01102
Author(s):  
Jamila Hamamouchi ◽  
Aicha Qasmaoui ◽  
Karima Halout ◽  
Réda Charof ◽  
Farida Ohmani

Multidrug-resistant Enterobacteriaceae are a major public health threat worldwide. These germs are the most redoubtable because they are producers of beta-lactamases and possess other mechanisms of resistance to many antibiotics. The objective of this work is to identify isolated strains of Enterobacteriaceae and to study their antibiotic resistance profiles, thus contributing to the surveillance of antibioresistance. This is a retrospective study over a period of three years (2018-2020) including urine samples taken in the region of Rabat-Salé-Zaire and examined at the laboratory of Epidemic Diseases in National Institute of Hygiene of Rabat. Enterobacteriaceae were the most frequent germs with a predominance of Escherichia coli (68%) followed by Klebsiella pneumoniae (23%). Extended-spectrum beta-lactamase-producing Enterobacteriaceae accounted for 10.5%. The highest resistance was observed with amoxicillin, followed by ticarcillin, cefalotin, trimethoprim/sulfamethoxazole, amoxicillin+clavulanic acid, nalidixic acid and finally ciprofloxacin and norfloxacin. The aminoglycosides and the 2nd and 3rd cephalosporins were the most active molecules. The sensitivity of imipenem and ertapenem was 100%. This study shows the worrying appearance of resistance to the usual antibiotics in uropathogenic enterobacteria. Rational prescription of antibiotics and monitoring of the evolution of bacterial resistance are necessary in each region.


2018 ◽  
Vol 81 (3) ◽  
pp. 424-429 ◽  
Author(s):  
SARA VINCENTI ◽  
MATTEO RAPONI ◽  
ROMINA SEZZATINI ◽  
GABRIELE GIUBBINI ◽  
PATRIZIA LAURENTI

ABSTRACT Foodborne diseases and antibiotic resistance are serious widespread health problems in the contemporary world. In this study, we compared the microbiological quality of ready-to-eat (RTE) foods found in community canteens versus hospital canteens in Rome, Italy, focusing on detection and quantification of Enterobacteriaceae and the antibiotic resistance of these bacteria. Our findings show a remarkable difference in Enterobacteriaceae contamination between RTE foods distributed in community canteens (33.5% of samples) and those distributed in hospital canteens (5.3% of samples). This result highlights greater attention to good manufacturing practices and good hygiene practices by the food operators in hospitals compared with food operators in community canteens. As expected, a higher percentage of cold food samples (70.9%) than of hot food samples (10.8%) were positive for these bacteria. Excluding the intrinsic resistance of each bacterial strain, 92.3% of the isolated strains were resistant to at least one antibiotic, and about half of the isolated strains were classified as multidrug resistant. The prevalence of multidrug-resistant strains was 50% in the community samples and 33.3% in hospital canteens. Our results indicate that approximately 38% of RTE foods provided in community canteens is not compliant with microbiological food safety criteria and could be a special risk for consumers through spread of antibiotic-resistant strains. Hygienic processing and handling of foods is necessary for both hospital and community canteens.


Sign in / Sign up

Export Citation Format

Share Document