scholarly journals Citrus Alkaline Extract Delayed the Progression of Pulmonary Fibrosis by Inhibiting p38/NF-κB Signaling Pathway-Induced Cell Apoptosis

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Qi Wu ◽  
Yao Zhou ◽  
Xian-mei Zhou

Objective. To investigate the intervention effect and functioning mechanism of citrus alkaline extract (CAE) on bleomycin- (BLM-) induced pulmonary fibrosis in mice. Methods. 42 C57BL/6 male mice were assigned randomly to the normal group, model group, low (16mg/kg), medial (32mg/kg) and high (64mg/kg) CAE dosage groups, prednisone group (6mg/kg), and pirfenidone group (100mg/kg), respectively. One day after model construction, intragastric administration was applied to the mice once a day for 28 days and then killed. Body weights of mice were recorded. Their pulmonary tissues were subjected to HE staining and Masson’s staining and then their degree of pulmonary alveolitis as well as pulmonary fibrosis was scored. Contents of hydroxyproline (HYP) and prostaglandin E2 (PGE2) in pulmonary tissues and levels of interleukin-17 (IL-17) in serum and bronchoalveolar lavage fluid (BALF) were determined by ELISA method. Expression of collagen I, collagen III, and Prosurfactant protein C (Pro-SPC) proteins in pulmonary tissue were measured immunohistochemically and that of nuclear transcription factor κB (NF-κB) and vimentin was determined by the immunofluorescence method. Apoptosis of pulmonary tissue was tested by the Tunel staining method, while the expression of MAPK-related protein was recorded by Western Blot assay. Results. After CAE treatment, the body weight, PGE2 level, and Pro-SPC protein expression of pulmonary fibrosis mice were increased, while the score of pulmonary alveolitis and pulmonary fibrosis, levels of HYP and cell apoptosis, IL-17 contents of serum and BALF in pulmonary tissues, and expression of collagen I, collagen III, vimentin, NF-κB, and p-p38 were reduced. Conclusion. CAE effectively delayed the progression of BLM-induced pulmonary fibrosis in pulmonary fibrosis mice and a possible mechanism is the inhibition of cell apoptosis of NF-κB/p38-mediated signaling pathway.

2016 ◽  
Vol 94 (12) ◽  
pp. 1315-1324 ◽  
Author(s):  
Xian-Wei Li ◽  
Xiao-Hui Li ◽  
Jie Du ◽  
Dai Li ◽  
Yuan-Jian Li ◽  
...  

We have found that eIF3a plays an important role in bleomycin-induced pulmonary fibrosis, and up-regulation of eIF3a induced by TGF-β1 is mediated via the ERK1/2 pathway. Whether ERK1/2 – eIF3a signal pathway is involved in calcitonin gene-related peptide (CGRP)-mediated pathogenesis of bleomycin-induced pulmonary fibrosis remains unknown. Pulmonary fibrosis was induced by intratracheal instillation of bleomycin (5 mg/kg) in rats. Primary pulmonary fibroblasts were cultured to investigate the proliferation by BrdU incorporation method and flow cytometry. Sensory CGRP depletion by capsaicin exacerbated bleomycin-induced pulmonary fibrosis in rats, as shown by a significant disturbed alveolar structure, marked thickening of the interalveolar septa and dense interstitial infiltration by inflammatory cells and fibroblasts, accompanied with increased expression of TGF-β1, eIF3a, phosphorylated ERK1/2, α-SMA, collagen I, and collagen III. Exogenous application of CGRP significantly inhibited TGF-β1-induced proliferation and differentiation of pulmonary fibroblasts concomitantly with decreased expression of eIF3a, phosphorylated ERK1/2, α-SMA, collagen I, and collagen III. These effects of CGRP were abolished in the presence of CGRP8-37. These results suggest that endogenous CGRP is related to the development of pulmonary fibrosis induced by bleomycin, and the inhibitory effect of CGRP on proliferation of lung fibroblasts involves the ERK1/2 – eIF3a signaling pathway.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Xiangwei Lv ◽  
Jinyi Li ◽  
Yisen Hu ◽  
Shirong Wang ◽  
Chengye Yang ◽  
...  

MicroRNAs (miRNAs) are regarded as a potential method for the treatment of atrial fibrillation (AF) although its molecular mechanism remains unknown. We found in our previous study that the level of peripheral blood miR-27b-3p and the expression of atrial tissue CX43 were both significantly downregulated in AF patients. In the present study, we propose and test this hypothesis that overexpression of miR-27b-3p attenuates atrial fibrosis, increases CX43 expression, and regulates the signaling pathway of Wnt/β-Catenin by targeting Wnt3a. miR-27b-3p overexpression was induced by rat tail vein injection of adeno-associated virus. Two weeks after transfection of adeno-associated virus, the rat AF model was established by tail vein injection of acetylcholine- (ACh-) CaCl2 for 7 days, and 1 ml/kg was injected daily. The incidence and duration of AF were recorded with an electrocardiogram. Cardiac function was monitored by cardiac ultrasound. Serum cardiac enzyme was detected by ELISA. The expression of atrial miR-27b-3 and Wnt3a was assayed by quantitative RT-PCR. Atrial fibrosis was determined by Masson’s trichrome staining. Expression of atrial Collagen-I and Collagen-III was tested by the immunohistochemical method. Expression of CX43 was measured by immunofluorescence. The expression of Collagen-I, a-SMA, Collagen-III, TGF-β1, CX43, Wnt3a, β-Catenin, and p-β-Catenin was assayed by western blot. Our results showed that miR-27b-3p overexpression could reduce the incidence and duration of AF, alleviate atrial fibrosis, increase atrial CX43 expression, and decrease the expression of Collagen-I, a-SMA, Collagen-III, TGF-β1, Wnt3a, and p-β-Catenin. In addition, the results of luciferase activity assay showed that Wnt3a is a validated miR-27b-3p target in HEK 293T cells. Our results provide a new evidence that miR-27b-3p regulates the signaling pathway of Wnt/β-Catenin by targeting Wnt3a, which may play an important role in the development of atrial fibrosis and AF.


2018 ◽  
Vol 96 (6) ◽  
pp. 742-751 ◽  
Author(s):  
Xingcai Zhang ◽  
Yuli Cai ◽  
Wei Zhang ◽  
Xianhai Chen

Idiopathic pulmonary fibrosis is an agnogenic chronic disorder with high morbidity and low survival rate. Quercetin is a flavonoid found in a variety of herbs with anti-fibrosis function. In this study, bleomycin was employed to induce a pulmonary fibrosis mouse model. The quercetin administration ameliorated bleomycin-induced pulmonary fibrosis, evidenced by the expression level changes of hydroxyproline, fibronectin, α-smooth muscle actin, Collagen I, and Collagen III. Similar results were observed in transforming growth factor (TGF)-β-treated human embryonic lung fibroblast (HELF). The bleomycin or TGF-β administration caused the increase of sphingosine-1-phosphate (S1P) level in pulmonary tissue and HELF cells, as well as its activation-required kinase, sphingosine kinase 1 (SphK1), and its degradation enzyme, sphinogosine-1-phosphate lyase (S1PL). However, the increase of S1P, SphK1, and S1PL was attenuated by application of quercetin. In addition, the effect of quercetin on fibrosis was abolished by the ectopic expression of SphK1. The colocalization of SphK1/S1PL and fibroblast specific protein 1 (FSP1) suggested the roles of fibroblasts in pulmonary fibrosis. In summary, we demonstrated that quercetin ameliorated pulmonary fibrosis in vivo and in vitro by inhibiting SphK1/S1P signaling.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jiepeng Wang ◽  
Hao Wang ◽  
Fang Fang ◽  
Chaoyi Fang ◽  
Shaoxian Wang ◽  
...  

Objective. To investigate the effects of Danggui Buxue Tang (DBT) on rats with pulmonary fibrosis (PF) and the underlying mechanism. Methods. Sixty specific pathogen-free (SPF) male Sprague-Dawley (SD) rats were randomly divided into 4 groups: control, PF, prednisone treatment, and DBT treatment. Intratracheal instillation of bleomycin (BLM) was performed to establish a PF rat model. DBT was administered to PF rats concurrently for 2 weeks. Lung samples were then collected for HE and Masson staining after pulmonary function testing, and semiquantitative analysis for the degree of alveolitis and fibrosis was performed using the Szapiel and Ashcroft score systems. Myeloperoxidase (MPO) activity, hydroxyproline (HYP), hyaluronic acid (HA), and inflammatory cytokine content were measured. Western blotting was performed to detect fibrotic marker and TLR4/NLRP3 signaling pathway changes. Results. Oral administration of DBT attenuated weight loss, survival rate, and pulmonary index. Lung histopathologic lesions were also reduced. DBT inhibited PF by decreasing the secretion of inflammatory cytokines and collagen deposition. Specifically, DBT reduced tumor necrosis factor-alpha (TNF-α), interleukin 1 beta (IL-1β), IL-6, HYP, alpha-smooth muscle actin (α-SMA), collagen I, and collagen III levels. Corollary experiments identified a potential mechanism involving suppression of TLR4/MyD88/NF-κB signaling pathway activation and the NLRP3/ASC/caspase-1 axis, the downstream regulatory pathway. Conclusion. DBT exhibited a potent effect on BLM-induced PF rats by inhibiting the TLR4/NLRP3 signaling pathway. Thus, DBT alleviates pulmonary inflammation to inhibit fibrotic pathology and should be considered as a candidate for the clinical treatment of PF.


2018 ◽  
Vol 48 (1) ◽  
pp. 293-303 ◽  
Author(s):  
Bin Yan ◽  
Minjun Huang ◽  
Canjun Zeng ◽  
Na Yao ◽  
Jie Zhang ◽  
...  

Background/Aims: Narrowing of the lumbar spinal canal is a condition called lumbar spinal stenosis (LSS) and is a high-morbidity problem in the elderly. LSS is commonly caused by hypertrophy of the ligamentum flavum (HLF). Previous studies showed that fibrosis of the ligamentum flavum (LF) largely contributed to HLF. However, the underlying pathomechanism remains unclear. Insulin-like growth factor-1 (IGF-1) is known to have an intimate relationship with fibrosis in various tissues. Nevertheless, currently, there are few studies regarding IGF-1 in HLF. In this study, we investigated the role of IGF-1 in HLF and its potential molecular mechanism of action. Methods: First, the IGF-1, phosphorylation of IGF-1 receptor (pIGF-1R), phosphorylation of AKT (pAKT), phosphorylation of S6(pS6), collagen I and collagen III expression levels were examined via immunohistochemistry and Western blotting in LF tissues from patients with LSS or Non-LSS. Second, primary LF cells were isolated from adults with a normal LF thickness and were cultured with different concentrations of IGF-1 with or without NVP-AEW541/rapamycin. Results: The results showed that IGF-1, pIGF-1R, pAKT, pS6, collagen I and collagen III protein expression in the LSS group was significantly higher than that in the Non-LSS group. Meanwhile, pIGF-1R, pAKT, pS6, collagen I and collagen III protein expression was significantly enhanced in LF cells after IGF-1 exposure, which can be notably blocked by NVP-AEW541. In addition, pS6, collagen I and collagen III protein expression was blocked by rapamycin. Conclusions: Enhanced IGF-1 promotes the synthesis of collagen I and collagen III via the mTORC1 signaling pathway, which eventually contributes to hypertrophy of the ligamentum flavum.


2008 ◽  
Vol 295 (1) ◽  
pp. F118-F127 ◽  
Author(s):  
Xiao R. Huang ◽  
Arthur C. K. Chung ◽  
Xiao J. Wang ◽  
Kar Neng Lai ◽  
Hui Y. Lan

Transforming growth factor (TGF)-β1, once activated, binds to its receptors and mediates renal fibrosis via the downstream Smad signaling pathway. We reported here that mice overexpressing latent TGF-β1 in keratinocytes were protected against renal fibrosis in a model of obstructive kidney disease. In normal mice, both transgenic (Tg) and wild-type (WT) mice had normal renal histology and function, despite a 10-fold increase in plasma latent TGF-β1 in Tg mice. A severe renal fibrosis was developed in WT mice at 7 days after urinary obstruction. Unexpectedly, renal fibrosis was prevented in Tg mice, although levels of latent TGF-β1 in both circulation and renal tissues remained high. Compared with the WT mice, quantitative real-time PCR showed that upregulation of renal α-smooth muscle actin (SMA), collagen I, and collagen III mRNA was inhibited in Tg mice (60–70% reduced, all P < 0.01). These were further confirmed by immunohistochemistry with a marked inhibition of tubulointerstitial accumulation of α-SMA+ fibroblasts, collagen I, and collagen III matrix in Tg mice (all P < 0.001). Further studies showed that inhibition of renal fibrosis in Tg mice was associated with a significant reduction in renal TGF-β1 and CTGF (60% reduced, P < 0.05), an increase in renal Smad7, a suppression of TSP-1 (a critical factor for TGF-β1 activation), and an inhibition of Smad2/3 activation (all P < 0.001). In conclusion, latent TGF-β may play a protective role in renal fibrosis. Inhibition of renal TGF-β1 expression and activation, thereby blocking the downstream TGF-β signaling pathway, may be a critical mechanism by which latent TGF-β1 protects against renal fibrosis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xin Wang ◽  
Rui Ren ◽  
Zehui Xu ◽  
Haidi Huang ◽  
Wanglin Jiang ◽  
...  

Tirbanibulin (KX-01) is the first clinical Src inhibitor of the novel peptidomimetic class that targets the peptide substrate site of Src providing more specificity toward the Src kinase. This study assessed the impact of KX-01 on cobalt chloride (CoCl2)-treated L929 cells and bleomycin (BLM)-induced pulmonary fibrosis in rats to evaluate the efficacy of this compound in vitro and in vivo, respectively. In CoCl2-treated L929 cells, KX-01 significantly reduced the expression of smooth muscle actin (α-SMA), collagen I, collagen III, hypoxia inducing factor (HIF-1α), signal transducers and transcriptional activators (p-STAT3), and p-Src. In BLM-induced pulmonary fibrosis rats, KX-01 reduced pathological scores, collagen deposition, α-SMA, collagen I, collagen III, p-Src, HIF-1α, and p-STAT3. Overall, these findings revealed that KX-01 can alleviate experimental pulmonary fibrosis via suppressing the p-SRC/p-STAT3 signaling pathways.


2020 ◽  
Vol 105 (3) ◽  
Author(s):  
Ying Xiao ◽  
Lei‐lei Li ◽  
Asma Bibi ◽  
Ning Zhang ◽  
Ting Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document