scholarly journals Overexpression of miR-27b-3p Targeting Wnt3a Regulates the Signaling Pathway of Wnt/β-Catenin and Attenuates Atrial Fibrosis in Rats with Atrial Fibrillation

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Xiangwei Lv ◽  
Jinyi Li ◽  
Yisen Hu ◽  
Shirong Wang ◽  
Chengye Yang ◽  
...  

MicroRNAs (miRNAs) are regarded as a potential method for the treatment of atrial fibrillation (AF) although its molecular mechanism remains unknown. We found in our previous study that the level of peripheral blood miR-27b-3p and the expression of atrial tissue CX43 were both significantly downregulated in AF patients. In the present study, we propose and test this hypothesis that overexpression of miR-27b-3p attenuates atrial fibrosis, increases CX43 expression, and regulates the signaling pathway of Wnt/β-Catenin by targeting Wnt3a. miR-27b-3p overexpression was induced by rat tail vein injection of adeno-associated virus. Two weeks after transfection of adeno-associated virus, the rat AF model was established by tail vein injection of acetylcholine- (ACh-) CaCl2 for 7 days, and 1 ml/kg was injected daily. The incidence and duration of AF were recorded with an electrocardiogram. Cardiac function was monitored by cardiac ultrasound. Serum cardiac enzyme was detected by ELISA. The expression of atrial miR-27b-3 and Wnt3a was assayed by quantitative RT-PCR. Atrial fibrosis was determined by Masson’s trichrome staining. Expression of atrial Collagen-I and Collagen-III was tested by the immunohistochemical method. Expression of CX43 was measured by immunofluorescence. The expression of Collagen-I, a-SMA, Collagen-III, TGF-β1, CX43, Wnt3a, β-Catenin, and p-β-Catenin was assayed by western blot. Our results showed that miR-27b-3p overexpression could reduce the incidence and duration of AF, alleviate atrial fibrosis, increase atrial CX43 expression, and decrease the expression of Collagen-I, a-SMA, Collagen-III, TGF-β1, Wnt3a, and p-β-Catenin. In addition, the results of luciferase activity assay showed that Wnt3a is a validated miR-27b-3p target in HEK 293T cells. Our results provide a new evidence that miR-27b-3p regulates the signaling pathway of Wnt/β-Catenin by targeting Wnt3a, which may play an important role in the development of atrial fibrosis and AF.

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xiangwei Lv ◽  
Pan Lu ◽  
Yisen Hu ◽  
Tongtong Xu

Purpose. Studies have found that microRNAs (miRNAs) are closely associated with atrial fibrillation, but their specific mechanism remains unclear. The purpose of this experiment is to explore the function of miR-29b-3p in regulating atrial remodeling by targeting PDGF-B signaling pathway and thereby also explore the potential mechanisms. Methods. We randomly divided twenty-four rats into four groups. Caudal intravenous injections of angiotensin-II (Ang-II) were administered to establish atrial fibrosis models. Expressions of miR-29b-3p and PDGF-B were then tested via RT-PCR, western blot, and immunohistochemistry. Binding sites were then analyzed via the bioinformatics online software TargetScan and verified by Luciferase Reporter. We used Masson staining to detect the degree of atrial fibrosis, while immunofluorescence and western blot were used to detect the expressions of Collagen-I and a-SMA. We used immunohistochemistry and western blot to detect the expression of connexin 43 (Cx43). Results. In comparison with the Ang-II group, miR-29b-3p was seen to lower the degree of atrial fibrosis, decrease the expression of fibrosis markers such as Collagen-I and a-SMA, and increase the protein expression of Cx43. MiR-29b-3p can lower the expression of PDGF-B, while the Luciferase Reporter showed that PDGF-B is the verified target gene of miR-29b-3p. Conclusions. MiR-29b-3p was able to reduce atrial structural and electrical remodeling in the study’s rat fibrosis model. This biological function may be expressed through the targeted regulation of the PDGF-B signaling pathway.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Guiling Ma ◽  
Xuejiao Wu ◽  
Lijun Zeng ◽  
Jiawei Jin ◽  
Xingpeng Liu ◽  
...  

Objectives. To investigate the association of serum autoantibodies against M2-muscarinic acetylcholine receptor (anti-M2-R) with atrial fibrosis in long-standing persistent atrial fibrillation (AF) patients. Methods. Twenty-four long-standing persistent AF patients, scheduled to undergo hybrid ablation surgery, were enrolled in the study. Twenty-six patients with sinus rhythm, scheduled to undergo coronary artery bypass grafting surgery, were enrolled into the non-AF group. We detected serum anti-M2-R levels. Left atrial appendages were subjected to histological and molecular biological assays. Patients in the AF group received follow-up for two years. Results. The AF group showed significantly higher serum anti-M2-R levels compared to the non-AF group (496.2 ± 232.5 vs. 86.3 ± 25.7 pmol/L, p<0.001). The AF group exhibited severe fibrosis in the left atrial appendages, as indicated by increased collagen volume fraction (45.2 ± 4.7% vs. 27.6 ± 8.3%, p<0.001), and higher levels of collagen I (0.52 ± 0.04 vs. 0.24 ± 0.06, p<0.001) and collagen III (0.51 ± 0.07 vs. 0.36 ± 0.09, p<0.001). TGF-β1 and CTGF were also upregulated in the AF group. A positive correlation between serum anti-M2-R levels and fibrosis of the left atrial appendage and fibrogenic indexes was observed. Conclusions. Serum anti-M2-R levels are higher in AF patients and are associated with the severity of atrial fibrosis. In addition, serum anti-M2-R levels are positively correlated to TGF-β1 and CTGF expression in the left atrial appendage.


2014 ◽  
Vol 92 (2) ◽  
pp. 119-125 ◽  
Author(s):  
Zhenjiang Liu ◽  
Lu Gan ◽  
Xiaobo Yang ◽  
Zhenzhen Zhang ◽  
Chao Sun

Suppressor of cytokine signaling 3 (SOCS3), a signal transduction cytokine, is involved in lipid metabolism as well as in cell proliferation, differentiation, apoptosis, and so on. To explore the effects of SOCS3 on apoptosis and lipid metabolism in liver, we used a simple effective method named hydrodynamic tail vein injection to overexpress SOCS3. Then orbital blood was obtained for the assessment of blood lipid after injection. Lipid metabolism related genes were detected by Western blot after the determination of serum lipids. Meanwhile, liver cell apoptosis was observed by Hoechst and TUNEL staining and the expression of apoptosis related proteins Bax, Bcl-2, and Caspase3 were detected as well as the JAK2/STAT3 signaling pathway. In addition, we also demonstrated the effect of SOCS3 in prime hepatocyte by overexpression or interference of SOCS3 along with SD1008, which is a specific inhibitor of the JAK2/STAT3 signaling pathway. Taken together, all the results indicated that SOCS3 promoted lipid synthesis in mice liver and promoted hepatocyte apoptosis by inhibiting the activation of the JAK2/STAT3 signaling pathway, however the detailed regulation mechanism had not yet been fully understood and needs further study.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11488
Author(s):  
Qiaoqiao Li ◽  
Yingyu Lai ◽  
Xiaoyan Gao ◽  
Xin Li ◽  
Chun-Yu Deng ◽  
...  

Atrial fibrillation is the most common form of cardiac arrhythmia. Atrial fibrosis is a significant feature of atrial fibrillation though its mechanism is not well understood. We searched the Gene Expression Omnibus database to compare mRNA expression patterns between atrial fibrillation and sinus rhythm samples; one hundred and forty eight differentially expressed genes were identified. Most of these genes were significantly enriched in the extracellular matrix organization process and collagen-activated tyrosine kinase receptor signaling pathway. To screen hub genes involved in atrial fibrosis, we constructed a protein-protein interaction network and found that three hub genes (SERPINE1/plasminogen activator inhibitor-1/PAI-1, TIMP Metallopeptidase Inhibitor 3/TIMP3 and decorin/DCN) play vital roles in atrial fibrosis, especially plasminogen activator inhibitor-1. Elevated plasminogen activator inhibitor-1 expression was positively correlated with the p53 signaling pathway. Plasminogen activator inhibitor-1 and p53 protein expression levels were verified in patients with sinus rhythm and atrial fibrillation by Western blot analysis. Compared with the sinus rhythm controls, p53 and plasminogen activator inhibitor-1 protein expressions were upregulated in the atrial tissues of patients with atrial fibrillation. p53 was also found to regulate plasminogen activator inhibitor-1 based on the results of cellular and molecular experiments. Thus, the p53/plasminogen activator inhibitor-1 signaling axis may participate in the pathophysiological processes of atrial fibrillation, and plasminogen activator inhibitor-1 may serve as a new therapeutic biomarker in atrial fibrillation.


2020 ◽  
pp. 813-822
Author(s):  
Y CHEN ◽  
X QIAO ◽  
L ZHANG ◽  
X LI ◽  
Q LIU

Atrial fibrillation is associated with atrial remodeling, in which connexin 43 (Cx43) and cell hypertrophy play important roles. In this study, apelin-13, an aliphatic peptide, was used to explore the protective effects of the adenosine monophosphate-activated protein kinase (AMPK)/mTOR signaling pathway on Cx43 expression and autophagy, using murine atrial HL-1 cells. The expression of Cx43, AMPK, B-type natriuretic peptide (BNP) and pathway-related proteins was detected by Western blot analysis. Cellular fluorescence imaging was used to visualize Cx43 distribution and the cytoskeleton. Our results showed that the Cx43 expression was significantly decreased in HL-1 cells treated with angiotensin II but increased in cells additionally treated with apelin-13. Meanwhile, apelin-13 decreased BNP expression and increased AMPK expression. However, the expression of Cx43 and LC3 increased by apelin-13 was inhibited by treatment with compound C, an AMPK inhibitor. In addition, rapamycin, an mTOR inhibitor, promoted the development of autophagy, further inhibited the protective effect on Cx43 expression and increased cell hypertrophy. Thus, apelin-13 enhances Cx43 expression and autophagy via the AMPK/mTOR signaling pathway, and serving as a potential therapeutic target for atrial fibrillation.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Qi Wu ◽  
Yao Zhou ◽  
Xian-mei Zhou

Objective. To investigate the intervention effect and functioning mechanism of citrus alkaline extract (CAE) on bleomycin- (BLM-) induced pulmonary fibrosis in mice. Methods. 42 C57BL/6 male mice were assigned randomly to the normal group, model group, low (16mg/kg), medial (32mg/kg) and high (64mg/kg) CAE dosage groups, prednisone group (6mg/kg), and pirfenidone group (100mg/kg), respectively. One day after model construction, intragastric administration was applied to the mice once a day for 28 days and then killed. Body weights of mice were recorded. Their pulmonary tissues were subjected to HE staining and Masson’s staining and then their degree of pulmonary alveolitis as well as pulmonary fibrosis was scored. Contents of hydroxyproline (HYP) and prostaglandin E2 (PGE2) in pulmonary tissues and levels of interleukin-17 (IL-17) in serum and bronchoalveolar lavage fluid (BALF) were determined by ELISA method. Expression of collagen I, collagen III, and Prosurfactant protein C (Pro-SPC) proteins in pulmonary tissue were measured immunohistochemically and that of nuclear transcription factor κB (NF-κB) and vimentin was determined by the immunofluorescence method. Apoptosis of pulmonary tissue was tested by the Tunel staining method, while the expression of MAPK-related protein was recorded by Western Blot assay. Results. After CAE treatment, the body weight, PGE2 level, and Pro-SPC protein expression of pulmonary fibrosis mice were increased, while the score of pulmonary alveolitis and pulmonary fibrosis, levels of HYP and cell apoptosis, IL-17 contents of serum and BALF in pulmonary tissues, and expression of collagen I, collagen III, vimentin, NF-κB, and p-p38 were reduced. Conclusion. CAE effectively delayed the progression of BLM-induced pulmonary fibrosis in pulmonary fibrosis mice and a possible mechanism is the inhibition of cell apoptosis of NF-κB/p38-mediated signaling pathway.


2021 ◽  
Vol 12 ◽  
Author(s):  
Huangdong Dai ◽  
Naishi Zhao ◽  
Hua Liu ◽  
Yue Zheng ◽  
Liang Zhao

Atrial fibrosis is a key contributor to atrial fibrillation (AF). Long non-coding ribonucleic acids (lncRNAs) were demonstrated to exhibit a key role in fibrotic remodeling; however, the function of nuclear-enriched abundant transcript 1 (NEAT1) in atrial fibrosis remains unclear. In the present study, we showed that NEAT1 was upregulated in atrial tissues of AF patients and was positively related to collagen I (coll I) and collagen III (coll III) expressions. Furthermore, the deletion of NEAT1 attenuated angiotensin II (Ang II)-caused atrial fibroblast proliferation, migration, and collagen production. We further observed that NEAT1 knockdown improved Ang II caused mouse atrial fibrosis in in vivo experiments. Moreover, we demonstrated that NEAT1 could negatively regulate miR-320 expression by acting as a competitive endogenous RNA (ceRNA). miR-320 directly targeted neuronal per arnt sim domain protein 2 (NPAS2) and suppressed its expression. We observed that NEAT1 exerted its function via the miR-320–NPAS2 axis in cardiac fibroblasts. These findings indicate that NEAT1 exerts a significant effect on atrial fibrosis and that this lncRNA is a new potential molecular target for AF treatment.


2010 ◽  
Vol 143 (3) ◽  
pp. 405-413 ◽  
Author(s):  
Felix Gramley ◽  
Johann Lorenzen ◽  
Eva Koellensperger ◽  
Klaus Kettering ◽  
Christian Weiss ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document