scholarly journals Functionality of TERGO Powders during the Synthesis of PANI-Based Composites for Electrical Devices

2019 ◽  
Vol 2019 ◽  
pp. 1-17
Author(s):  
M. A. Domínguez-Crespo ◽  
A. B. López-Oyama ◽  
A. M. Torres-Huerta ◽  
A. R. Hernández-Basilio ◽  
D. Palma-Ramírez ◽  
...  

In this work, hybrid composites were prepared using polyaniline (PANI) and electrochemically reduced graphene oxide (ERGO) by in situ polymerization. ERGO powders were obtained by a two-way route, Hummer’s method, and one-step potential (−2 V) followed by annealing process at 400°C (TERGO powders): different quantities of TERGO fine particles (10, 20, and 30 wt%) were added to the in situ PANI polymerization in order to produce the hybrid composites. The morphology and structure of the PANI/TERGO compounds were characterized by Raman spectroscopy, ultraviolet-visible spectroscopy (UV-Vis), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Thermal treatment of ERGO powders pointed out high-defect surfaces with a wrinkle-type morphology (ID/IG ratio~0.90). The emeraldine phase of PANI was obtained with a maximum value of 61%, which decreases with the amount of TERGO powders. It is also seen that composites displayed a combined morphology between PANI matrix and TERGO powders, confirming a physical interaction between both morphologies. The amount of TERGO particles into the polymeric matrix also modifies the sample microstructure from a semispherical shape to extend sheets, where PANI is sandwiched between TERGO layers. Electrical conductivity of composites slightly increases independent of the TERGO amount (30 S/m and 39 S/m) due to the rough TERGO surface that conditioned the homogeneous nucleation of a large amount of polymer (PANI) reducing the area to move the electrical charge.

2013 ◽  
Vol 457-458 ◽  
pp. 244-247
Author(s):  
Min Li ◽  
Li Guang Xiao ◽  
Hong Kai Zhao

Polyethylene/montmorillonite (PE/MMT) nanocomposites were prepared by in situ polymerization. The morphology of MMT/MgCl2/TiCl4 catalyst and PE/MMT nanocomposites was investigated by scanning electron microscopy (SEM). It can be seen that MMT/MgCl2/TiCl4 catalyst remained the original MMT sheet structures and many holes were found in MMT and the morphology of PE/MMT nanocomposites is part of the sheet in the form of existence, as most of the petal structure. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were carried out to characterize all the samples. XRD results reveal that the original basal reflection peak of PEI1 and PEI2 disappears completely and that of PEI3 become very weak. MMT/MgCl2/TiCl4 catalyst was finely dispersed in the PE matrix. Instead of being individually dispersed, most layers were found in thin stacks comprising several swollen layers.


2010 ◽  
Vol 148-149 ◽  
pp. 1547-1550 ◽  
Author(s):  
Hua Lan Wang ◽  
Qing Li Hao ◽  
Xi Feng Xia ◽  
Zhi Jia Wang ◽  
Jiao Tian ◽  
...  

A graphene oxide/polyaniline composite was synthesized by an in situ polymerization process. This product was simply prepared in an ethylene glycol medium, using ammonium persulfate as oxidant in ice bath. The composite was characterized by field emission scanning electron microscopy, transmission electron microscopy, X-Ray photoelectron spectroscopy, Raman spectroscopy and electrochemical test. The composite material showed a good electrochemical performance.


NANO ◽  
2017 ◽  
Vol 12 (12) ◽  
pp. 1750148 ◽  
Author(s):  
Xinzhi Sun ◽  
Fanglin Du

Monometallic M1(M[Formula: see text] Ni/Cu/Fe/Co) silicates and bimetallic Ni–M2(M[Formula: see text] Cu/Fe/Co) silicates hollow spheres with mesoporous structure and the controllable morphology have been synthesized successfully via one-step sacrificial template method under hydrothermal conditions. The catalysts were obtained by reducing the corresponding silicates in situ under the hydrogen atmosphere at a certain temperature. All the silicates and the catalysts M1/SiO2 and Ni–M2/SiO2 hollow spheres have been characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET) and temperature-programmed reduction (TPR) thoroughly and systematically. The morphology and reaction conditions of bimetallic Ni–M2 silicates hollow spheres depend on the second metal M2, which has been verified by SEM, TEM and XRD. From the results, it can be concluded that bimetallic silicates possess better physical properties in favor of the catalytic activity. Bimetallic Ni–M2/SiO2 hollow spheres had higher catalytic property than the monometallic M1/SiO2 and the conversion of nitrobenzene could reach 100% within 3[Formula: see text]h using Ni–Cu/SiO2 and Ni–Fe/SiO2 hollow spheres as catalysts.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2787
Author(s):  
Cheng-Ho Chen ◽  
Ying-Chen Lin ◽  
Fu-Su Yen

Polyaniline doped with dodecylbenzenesulfonic acid/χ-aluminum oxide (PANDB/χ-Al2O3) conducting core-shell nanocomposites was synthesized via an in situ polymerization method in this study. PANDB was synthesized in the presence of dodecylbenzenesulfonic acid (DBSA), which functioned as a dopant and surfactant. The electrical conductivity of the conducting PANDB/χ-Al2O3 core-shell nanocomposite was approximately 1.7 × 10−1 S/cm when the aniline/χ-Al2O3 (AN/χ-Al2O3) weight ratio was 1.5. The transmission electron microscopy (TEM) results indicated that the χ-Al2O3 nanoflakes were thoroughly coated by PANDB to form the core-shell (χ-Al2O3-PANDB) structure. The TEM and field-emission scanning electron microscopy (FE-SEM) images of the conducting PANDB/χ-Al2O3 core-shell nanocomposites also indicated that the thickness of the PANDB layer (shell) could be increased as the weight ratio of AN/χ-Al2O3 was increased. In this study, the optimum weight ratio of AN/χ-Al2O3 was identified as 1.5. The conducting PANDB/χ-Al2O3 core-shell nanocomposite was then blended with water-based polyurethane (WPU) to form a conducting WPU/PANDB/χ-Al2O3 blend film. The resulting blend film has promising antistatic and electrostatic discharge (ESD) properties.


2021 ◽  
Author(s):  
Parthiban E ◽  
Sudarsan S

Abstract The silver nanoparticles (AgNPs) have been embedded within the itaconic acid (IA), polyaniline (PANi), and copper oxide (CuO) to form Ag@PANi-IA-CuO polymeric nanocomposites. In-situ polymerization of itaconic acid has been carried out in the presence of aniline monomers using anhydrous iron trichloride as an oxidising agent. The piper betel leaf extract was used to a reduction of AgNO3. The anchoring of AgNPs onto nanocomposite has been characterized using different techniques such as Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED) X-ray diffraction (XRD), and energy-dispersive X-ray (EDX). Biological, magnetic, and thermal properties of nanocomposites have also been studied in antimicrobial, vibrating sample magnetometer (VSM), and thermogravimetric analysis (TGA). Hence, these types of silver nanoparticles anchored polyaniline-itaconic acid-CuO nanocomposite has shown an attractive application in the field of biomedical and wastewater treatment.


2010 ◽  
Vol 150-151 ◽  
pp. 386-390
Author(s):  
Yuan Xun Li ◽  
Ying Li Liu ◽  
Huai Wu Zhang ◽  
Wei Wei Ling

The rod-shaped polyaniline (PANI)-barium ferrite nanocomposites were synthesized by in situ polymerization of aniline in the presence of BaFe12O19 nanoparticles with diameters of 60-80 nm. The composites obtained were characterized by infrared spectra (IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The thermal stability and the composition of the composites were investigated by TG-DTG analysis. The results indicate that the thermal stability of the composites is higher than that of the pure PANI which can be attributed to the interactions existed between PANI chains and ferrite particles.


2008 ◽  
Vol 54 ◽  
pp. 325-330 ◽  
Author(s):  
Ana Claudia V. De Araújo ◽  
S. Alves ◽  
W.M. Azevedo

In this work we report the preparation and characterization of a polyaniline/magnetite (PANI)-Fe3O4 nanocomposite, with average diameter around 50 nm and tubular morphology. The tubular nanocomposite was synthesized by an in situ polymerization of aniline using Fe3O4 nanoparticles as an oxidant agent. The Fe3O4 nanoparticles with narrow size distribution were synthesized by co-precipitation technique and the products were characterized by powder X-ray diffractometry (XRD), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM).


e-Polymers ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 61-69 ◽  
Author(s):  
Yong Xie ◽  
Shi-Hao Zhang ◽  
Hai-Yun Jiang ◽  
Hui Zeng ◽  
Ruo-Mei Wu ◽  
...  

AbstractA new conductive composite composed of nanoscale carbon black (CB) and poly(3,4-ethylenedioxythiophene) (PEDOT) was prepared by a simple in-situ polymerization. The morphology of the composite was characterized by scanning electron microscopy and transmission electron microscopy. The structure and thermal stability were examined by Fourier transform infrared spectroscopy and thermal gravimetric analysis, respectively. The results indicated that the addition of CB improved the agglomerated state of PEDOT. On the one hand, CB effectively hindered the agglomeration of PEDOT during the polymerization. Thus, the obtained CB-PEDOT composite dispersed well in solution, which can facilitate the reprocessing of CB-PEDOT. On the other hand, CB covered most of the surface of PEDOT, which enhanced the electrical conductivity of CB-PEDOT. Furthermore, the interfacial interaction between CB and PEDOT improved the thermal stability of CB-PEDOT. The findings of this research suggest that CB can replace polyelectrolyte poly(styrenesulfonic acid) (PSS) to achieve reprocessable materials for certain applications.


2020 ◽  
Vol 59 (1) ◽  
pp. 434-440
Author(s):  
Yiming Sun ◽  
Jie Mei ◽  
Huan Hu ◽  
Jiru Ying ◽  
Weiyi Zhou ◽  
...  

AbstractMontmorillonite (MMT) was modified with cetyl trimethyl ammonium bromide (CTAB) to obtain organomontmorillonite (OMMT) by stirring and pulsed ultrasonic mixing. Polyamide 6 (PA6)/OMMT nanocomposites were then prepared via in-situ polymerization.The resulting OMMT and PA6/OMMT nanocomposites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The results suggested that the OMMT interlayer distance was greatly increased to 3.13 nm due to CTAB being inter-calated into the MMT galleries. The OMMT interlayer distance was further enlarged to 10-20 nm during the polymerization process. The OMMT layers were exfoliated into nanoscale layers and uniformly dispersed in the molten ∈-caprolactam and PA6 matrix, and exfoliated structure nanocomposites were formed.


Nanomaterials ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1323 ◽  
Author(s):  
Meng Li ◽  
Fengbin Huang ◽  
Jin Pan ◽  
Luoyang Li ◽  
Yifan Zhang ◽  
...  

Antimony sulfide (Sb2S3) with a high theoretical capacity is considered as a promising candidate for Na-ion batteries (NIBs) and K-ion batteries (KIBs). However, its poor electrochemical activity and structural stability are the main issues to be solved. Herein, amorphous Sb2S3 nanospheres/carbon nanotube (Sb2S3/CNT) nanocomposites are successfully synthesized via one step self-assembly method. In-situ growth of amorphous Sb2S3 nanospheres on the CNTs is confirmed by X-ray diffraction, field-emission scanning electron microscopy, and transmission electron microscopy. The amorphous Sb2S3/CNT nanocomposites as an anode for NIBs exhibit excellent electrochemical performance, delivering a high charge capacity of 870 mA h g−1 at 100 mA g−1, with an initial coulomb efficiency of 77.8%. Even at 3000 mA g−1, a charge capacity of 474 mA h g−1 can be achieved. As an anode for KIBs, the amorphous Sb2S3/CNT nanocomposites also demonstrate a high charge capacity of 451 mA h g−1 at 25 mA g−1. The remarkable performance of the amorphous Sb2S3/CNT nanocomposites is attributed to the synergic effects of the amorphous Sb2S3 nanospheres and 3D porous conductive network constructed by the CNTs.


Sign in / Sign up

Export Citation Format

Share Document