scholarly journals Improvement Methods for Reduction of the High Stress of Ultra-High Asphalt Concrete Core Dams

2019 ◽  
Vol 9 (21) ◽  
pp. 4618
Author(s):  
Jun Gao ◽  
Faning Dang ◽  
Zongyuan Ma ◽  
Yi Xue ◽  
Jie Ren

With the rapid development of asphalt concrete core rockfill dams (ACCRDs), the construction of ultra-high asphalt concrete core rockfill dams (UACCRDs) has been improved significantly. However, the security problems of asphalt concrete core (ACC) become very prominent with the increase of dam height. The shear failure control standard and tensile failure control standard of ACC are suggested. The mechanisms of ACC that generate high shear stress and high tensile stress are investigated. Based on the definition of stress level and the transmission mechanism of arch structures, the improvement methods that reduce the high shear stress and high tensile stress of ultra-high asphalt concrete core (UACC) are proposed and investigated. The results show that the stress level of ACC can be reduced significantly by the increase of the strength parameters of ACC (failure ratio, cohesion, and internal friction angle). The following value ranges of the failure ratio, cohesion, and internal friction angle of ACC for the suitable construction of UACCRDs are recommended: Rf ≥ 0.75, C ≥ 0.30 MPa, and φ ≥ 28.5° (h = 150 m), with the growth gradient adjusted by 5%, 15%, and 5%/25 m. The tensile stress and tensile stress area can be reduced obviously by the new type of dams (curved asphalt concrete core rockfill dams (CACCRDs)). The value ranges of the curvature of CACC (k ≥ 1.0 × 10−3) for the suitable construction of UACCRDs are recommended.

2020 ◽  
Vol 857 ◽  
pp. 203-211
Author(s):  
Majid Hamed ◽  
Waleed S. Sidik ◽  
Hanifi Canakci ◽  
Fatih Celik ◽  
Romel N. Georgees

This study was undertaken to investigate some specific problems that limit a safe design and construction of structures on problematic soils. An experimental study was carried out to examine the influence of loading rate and moisture content on shear strength of organic soil. Influece of moisture content on interface friction between organic soil and structural materials was also attempted. A commonly used soil in Iraq was prepared at varying moisture contents of 39%, 57% and 75%. The experimental results showed that the increase in water content will decrease the shear stress and the internal friction angle. An increase of the shearing rate was found to decrease the shear stress and internal friction angle for all percetanges of water contents. Further, direct shear tests were carried out to detect the interface shear stress behavior between organic soil and structural materials. The results revealed that the increase in water content was shown to have significant negetavie effects on the interface internal friction and angle shear strength.


Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1234
Author(s):  
Yongsheng Yao ◽  
Jue Li ◽  
Chenghao Liang ◽  
Xin Hu

Coarse aggregate is the major part of asphalt mixture, and plays an essential role in mechanical performance of pavement structure. However, the use of poor-quality coarse recycled aggregate (CRA) reduces the strength and stability of the aggregate skeleton. It is a challenge to predict accurately the influence of CRA on the performance of asphalt mixture. In this study, both a uniaxial compression test and a direct tensile test were carried out to evaluate the failure strength of asphalt concrete with four CRA content. The discrete element method (DEM) was applied to simulate the specimen of asphalt concrete considering the distribution and properties of CRA. The results showed that temperature and loading rate have a significant influence on failure strength, especially when the CRA content was more than 20%. With the increase of CRA content, both cohesion force and internal friction angle were gradually weakened. The proposed model can be used to predict the failure strength of asphalt mixture, since both experimental and simulated results had a high consistency and repeatability. With the decrease of CRA strength, the nominal cohesion force of the specimen decreased, while the internal friction angle increased.


2018 ◽  
Vol 68 (2) ◽  
pp. 150 ◽  
Author(s):  
Yoon Keon Kim ◽  
Woo Chun Choi

The debris generated by the explosion of a building or ammunition is flown far away through the ricochet phenomenon. The debris contains a very large amount of energy, and a risk factor surrounding it may be applied. The safety distance from debris is set from experiments or FEM analysis. The ricochet of debris is affected not only by the initial conditions of the debris, but also by the conditions of the medium. In this paper, the effect of sand temperature on the ricochet of sphere projectiles was investigated through experiments and FEM, by measuring the shear stress and internal friction angle when the sand temperature increases. As the temperature of the sand increases, the shear stress and the internal friction angle decrease, and the penetration depth of the projectile increases. As the depth of penetration becomes longer, the kinetic energy is lost more by the friction force with the sand and, the sphere projectile speed decreases more. This is mainly caused by the energy loss of the projectile, so the kinetic energy of the ricocheted projectile is reduced. Therefore, when setting the optimized inhabited building distance (IBD), the conditions of the medium should be taken into account.


1954 ◽  
Vol 4 (1) ◽  
pp. 1-18 ◽  
Author(s):  
H. L. Cox ◽  
J. E. Field

SummaryAn investigation has been made to determine the positions and directions of initiation and the directions of propagation of fatigue cracks and to examine the correlation between these positions and directions and the planes on which maximum tensile and maximum shear stresses are generated.To afford as wide a range as possible of the ratio of maximum shear stress to maximum tensile stress, tests have been made under combinations of alternating bending and torsion; and in order to separate partially the regions of high shear stress from those of high direct stress, the tests have been made on pieces of square section with the plane of bending parallel to one diagonal of the section. Two series of tests have been made; one a preliminary series on pieces having no parallel portion and the other on pieces having a parallel portion about three times the length of the side of the square section. The positions and directions of initiation and the directions of propagation of fatigue cracks have been observed and compared with the positions and directions of the maximum tensile and shear stresses.Fatigue cracks may be initiated as a result of either high shear stress or high tensile stress and in the present series of tests on mild steel, cracking in tension has occurred in preference to cracking in shear when the ratio of the tensile stress range to the shear stress range has exceeded about 1.6; for values of this ratio less than 1.6, the cracks started in shear (and vice versa); propagation along the plane of maximum shear appears to be preferred up to a slightly greater value of the tensile/shear ratio (about 1.7 possibly). The general direction of a crack formed as a result of high tension usually follows the plane of maximum tension and that of a crack formed as a result of shear usually follows the plane of maximum shear. In detail both types of crack—in this mild steel—deviate quite widely from their general directions but this deviation bears no obvious relation to the microstructure of the material. Cracks propagating along one plane of maximum shear occasionally show a marked tendency to branch along the associated plane of maximum shear; but this tendency is not always observed and in other cases no tendency to branch has been noted.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Jian Zhang ◽  
Jiuting Cao ◽  
Sijie Huang

The cyclic triaxial system is used to investigate the effects of confining pressure, initial shear stress, cyclic stress ratio, and vibration frequency on the dynamic strength characteristics of saturated sand in the Wenchuan area. Results show that when the vibration frequency is constant, the dynamic strength of sand increases with the increase of the consolidation ratio. However, when the consolidation ratio exceeds a certain value, the dynamic strength of sand decreases or increases slowly. The dynamic internal friction angle first increases and then decreases with the increase of consolidation ratio, and the dynamic internal friction angle under different initial shear stresses differs by a maximum of about 12%. When the failure cycles are constant, the dynamic strength and the dynamic internal friction angle of the sand increase with the increase of vibration frequency, and the dynamic internal friction angle at different frequencies differs by a maximum of about 7%. When the cyclic stress ratio is constant, the higher the vibration frequency, the greater the cycles required to achieve the failure. As the cyclic stress ratio decreases, the influence of the vibration frequency on the failure cycles is gradually reduced.


2018 ◽  
Vol 477 (1) ◽  
pp. 523-536 ◽  
Author(s):  
Brandon Dugan ◽  
Xin Zhao

AbstractDirect simple shear experiments on mud samples from 0 to 15 mbsf (metres below seafloor) in the Ursa Basin (northern Gulf of Mexico) document that stress level impacts shear strength and pore pressure during failure. As burial depth increased (from 7.35 to 13.28 mbsf), cohesion decreased (from 12.3 to 6.5 kPa) and the internal friction angle increased (from 18° to 21°). For a specimen from 11.75 mbsf, an increase in maximum consolidation stress (from 45 to 179 kPa) resulted in an increase in the shear-induced pore pressure (from 29 to 150 kPa); however, the normalized peak shear stress decreased (from 0.37 to 0.25). Our results document that consolidation at shallow depths induces a positive feedback on pore-pressure genesis. For resedimented samples, which lack a stress history, cohesion was 3.6 kPa and the internal friction angle was 24°. As the maximum consolidation stress increased (from 40 to 254 kPa) on resedimented samples, the shear-induced pore pressure increased (from 22 to 203 kPa), whereas the normalized peak shear stress decreased (from 0.32 to 0.25). Our experiments showed that resedimented samples have similar strength and failure behaviour to intact samples. By constraining pore pressure, strength and initial stress state, we gain a better insight into slope-failure dynamics. Therefore, our experiments provide constraints on strength and shear-induced pore pressure at the onset of shallow failure that could be included in slope-failure and hazard models.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Yanhui Cheng ◽  
Weijun Yang ◽  
Dongliang He

Structural plane is a key factor in controlling the stability of rock mass engineering. To study the influence of structural plane microscopic parameters on direct shear strength, this paper established the direct shear mechanical model of the structural plane by using the discrete element code PFC2D. From the mesoscopic perspective, the research on the direct shear test for structural plane has been conducted. The bonding strength and friction coefficient of the structural plane are investigated, and the effect of mesoscopic parameters on the shear mechanical behavior of the structural plane has been analyzed. The results show that the internal friction angle φ of the structural plane decreases with the increase of particle contact stiffness ratio. However, the change range of cohesion is small. The internal friction angle decreases first and then increases with the increase of parallel bond stiffness ratio. The influence of particle contact modulus EC on cohesion c is relatively small. The internal friction angle obtained by the direct shear test is larger than that obtained by the triaxial compression test. Parallel bond elastic modulus has a stronger impact on friction angle φ than that on cohesion c. Under the same normal stress conditions, the shear strength of the specimens increases with particle size. The shear strength of the specimen gradually decreases with the increase of the particle size ratio.


2015 ◽  
Vol 744-746 ◽  
pp. 593-596
Author(s):  
Yuan Meng

When calculating the dam slope failure process, traditional strength reduction method doesn't consider the difference of decay rate between cohesion and internal friction angle and discount the strength parameters for all elements. This paper uses two different reduction factors for material strength parameters, slope cohesion and internal friction angle. Based on the yield approach index criterion, we change the reduction region in time and put forward a double safety factor of dynamic local strength reduction method for engineering analysis of dam slope stability.


Sign in / Sign up

Export Citation Format

Share Document