scholarly journals Mechanisms of Resistance to Silver Nanoparticles in Endodontic Bacteria: A Literature Review

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Marco Salas-Orozco ◽  
Nereyda Niño-Martínez ◽  
Gabriel-Alejandro Martínez-Castañón ◽  
Fernando Torres Méndez ◽  
Martha Eugenia Compean Jasso ◽  
...  

In recent years, the use and research in nanomaterials have increased considerably. In dentistry, nanomaterials have been investigated in all their specialties like dental prosthesis, implantology, dental operative, periodontics, and endodontics. The nanomaterials are investigated in the areas of dentistry due to their application in the improvement of the physical and chemical properties of conventional materials, as well as the use of the antimicrobial activity of nanomaterials such as silver nanoparticles. Recently, silver nanoparticles (AgNPs) have been studied for their use as an endodontic irrigator due to their high antimicrobial activity. But little is known about the possible mechanisms of the adaptation to AgNPs by endodontic bacteria. These mechanisms may be intrinsic (such as efflux pumps, downregulation of porins, and chromosomal resistance genes) or extrinsic (such as point and adaptive mutations and plasmids with resistance genes) adaptation systems. In addition to this, it has been reported that coselection or coregulation of metal resistance mechanisms, as in the case of nanoparticles, is accompanied by increased resistance to various antibiotics. For these reasons, the objective of this article is to do a review of the literature on the possible mechanisms used by endodontic bacteria to generate resistance to silver nanoparticles and the possible side effects of these mechanisms.

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Eriberto Bressan ◽  
Letizia Ferroni ◽  
Chiara Gardin ◽  
Chiara Rigo ◽  
Michele Stocchero ◽  
...  

Nanotechnology has gone through a period of rapid growth, thus leading to the constant increase in the application of engineered nanomaterials in daily life. Several different types of nanoparticles have been engineered to be employed in a wide array of applications due to their high surface to volume ratio that leads to unique physical and chemical properties. So far, silver nanoparticles (AgNps) have been used in many more different medical devices than any other nanomaterial, mainly due to their antimicrobial properties. Despite the promising advantages posed by using AgNps in medical applications, the possible health effects associated with the inevitable human exposure to AgNps have raised concerns as to their use since a clear understanding of their specific interaction with biological systems has not been attained yet. In light of such consideration, aim of the present work is the morphological analysis of the intracellular behavior of AgNps with a diameter of 10 nm, with a special attention to their interaction with mitochondria.


2021 ◽  
Vol 11 (3) ◽  
pp. 1120
Author(s):  
Corina Michaela Crisan ◽  
Teodora Mocan ◽  
Meda Manolea ◽  
Lavinia Iulia Lasca ◽  
Flaviu-Alexandru Tăbăran ◽  
...  

Nanomaterials represent a promising novel class of materials to be used as antibacterial solutions. Inhomogeneity of synthesis and characterization methods, as well as resulting variate physical and chemical properties make selection of proper nanostructure difficult when designing antimicrobial experiments. Present study focuses on the already existing evidence regarding silver nanoparticles and their antibacterial applications, with focus on various modulatory factors of reported antimicrobial efficiency. Present paper focuses on synthesis and characterization methods, factors modulating antibacterial efficiency, laboratory quantification procedures, as well as up–to-date knowledge on mechanisms of antibacterial action for silver nanoparticles. Moreover, challenges and future prospects for antimicrobial applications of silver nanoparticles are reviewed and discussed.


Author(s):  
Shan Xue ◽  
Shun-Li Chen ◽  
Qing Ling ◽  
Qunhui Yuan ◽  
Wei Gan

The redox of silver on the surface of Ag nanoparticles (AgNPs) has received extensive attentions because of its significant impact on the biological, physical and chemical properties of AgNPs and...


1966 ◽  
Vol 24 ◽  
pp. 101-110
Author(s):  
W. Iwanowska

In connection with the spectrophotometric study of population-type characteristics of various kinds of stars, a statistical analysis of kinematical and distribution parameters of the same stars is performed at the Toruń Observatory. This has a twofold purpose: first, to provide a practical guide in selecting stars for observing programmes, second, to contribute to the understanding of relations existing between the physical and chemical properties of stars and their kinematics and distribution in the Galaxy.


Author(s):  
Mehmet Sarikaya ◽  
Ilhan A. Aksay

Biomimetics involves investigation of structure, function, and methods of synthesis of biological composite materials. The goal is to apply this information to the design and synthesis of materials for engineering applications.Properties of engineering materials are structure sensitive through the whole spectrum of dimensions from nanometer to macro scale. The goal in designing and processing of technological materials, therefore, is to control microstructural evolution at each of these dimensions so as to achieve predictable physical and chemical properties. Control at each successive level of dimension, however, is a major challenge as is the retention of integrity between successive levels. Engineering materials are rarely fabricated to achieve more than a few of the desired properties and the synthesis techniques usually involve high temperature or low pressure conditions that are energy inefficient and environmentally damaging.In contrast to human-made materials, organisms synthesize composites whose intricate structures are more controlled at each scale and hierarchical order.


2017 ◽  
pp. 31-43
Author(s):  
Berta Ratilla ◽  
Loreme Cagande ◽  
Othello Capuno

Organic farming is one of the management strategies that improve productivity of marginal uplands. The study aimed to: (1) evaluate effects of various organic-based fertilizers on the growth and yield of corn; (2) determine the appropriate combination for optimum yield; and (3) assess changes on the soil physical and chemical properties. Experiment was laid out in Randomized Complete Block Design, with 3 replications and 7 treatments, namely; T0=(0-0-0); T1=1t ha-1 Evans + 45-30-30kg N, P2O5, K2O ha-1; T2=t ha-1 Wellgrow + 45-30-30kg N, P2O5, K2O ha-1; T3=15t ha-1 chicken dung; T4=10t ha-1 chicken dung + 45-30-30kg N, P2O5, K2O ha-1; T5=15t ha-1 Vermicast; and T6=10t ha-1 Vermicast + 45-30-30kg N, P2O5, K2O ha-1. Application of organic-based fertilizers with or without inorganic fertilizers promoted growth of corn than the control. But due to high infestation of corn silk beetle(Monolepta bifasciata Horns), its grain yield was greatly affected. In the second cropping, except for Evans, any of these fertilizers applied alone or combined with 45-30-30kg N, P2O5, K2O ha-1 appeared appropriate in increasing corn earyield. Soil physical and chemical properties changed with addition of organic fertilizers. While bulk density decreased irrespective of treatments, pH, total N, available P and exchangeable K generally increased more with chicken dung application.


Sign in / Sign up

Export Citation Format

Share Document