scholarly journals Estimation of Strong Wind Distribution on the Korean Peninsula for Various Recurrence Periods: Significance of Nontyphoon Conditions

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Jae-Hee Hahm ◽  
Ha-Yoon Jeong ◽  
Kyung-Hwan Kwak

Long-term automated synoptic observing system (ASOS) data collected from 101 stations over a period of 50 years (1967–2016) were analyzed to investigate the distribution of strong winds on the Korean peninsula by utilizing a statistical method. The Gumbel distribution was used to estimate the wind speed for recurrence periods of 1, 10, 50, 75, and 100 years. For all recurrence periods, the coastal regions experienced higher wind speeds, which exceeded the strong wind advisory level, than the inland and metropolitan regions. The strong winds were predominantly induced by summertime typhoons, especially in the south and west coastal regions. In addition, nontyphoon factors, such as a topographical factor with atmospheric instability in a mountainous coastal region, can cause localized severe weather in the form of strong wind. By performing the weather research and forecasting (WRF) model simulation, an abrupt increase in wind speed up to 20 m·s−1 was reproduced under the condition of onshore prevailing winds heading toward a mountain ridge in a coastal region. Estimation of strong wind spatial distribution can help the region-to-region establishment of an action plan to prepare for damage caused by strong winds.

Atmosphere ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 431
Author(s):  
Joohyun Lee ◽  
Jaemyeong Mango Seo ◽  
Jong-Jin Baik ◽  
Seung-Bu Park ◽  
Beom-Soon Han

The Yeongdong region, located east of the Taebaek Mountains, South Korea, often experiences severe windstorms in spring, causing a lot of damages, especially when forest fires spread out rapidly by strong winds. Here, the characteristics and generation mechanisms of the windstorms in the Yeongdong region on 8 April 2012 are examined through a high-resolution Weather Research and Forecasting (WRF) model simulation. In the Yangyang area, the steep descent of the isentropes on the lee slope of the mountain and their recovery farther leeward are seen. Inversion layers and incoming flow in hydraulic jump regime suggest that the hydraulic jump is responsible for the downslope windstorm. In the Jangjeon area, the plume-shaped wind pattern extending seaward from the gap exit is seen when the sea-level pressure difference between the gap inside and the gap exit, being responsible for the gap winds, is large. In the Uljin area, downslope windstorms pass over the region with weak wind, low Richardson number, and deep planetary boundary layer (PBL), making banded pattern in the wind and PBL height fields. This study demonstrates that the characteristics of the windstorms in the lee of the Taebaek Mountains and their generation mechanisms differ depending on local topographic features.


2014 ◽  
Vol 14 (8) ◽  
pp. 2179-2187 ◽  
Author(s):  
T. Haghroosta ◽  
W. R. Ismail ◽  
P. Ghafarian ◽  
S. M. Barekati

Abstract. The Weather Research and Forecasting (WRF) model includes various configuration options related to physics parameters, which can affect the performance of the model. In this study, numerical experiments were conducted to determine the best combination of physics parameterization schemes for the simulation of sea surface temperatures, latent heat flux, sensible heat flux, precipitation rate, and wind speed that characterized typhoons. Through these experiments, several physics parameterization options within the Weather Research and Forecasting (WRF) model were exhaustively tested for typhoon Noul, which originated in the South China Sea in November 2008. The model domain consisted of one coarse domain and one nested domain. The resolution of the coarse domain was 30 km, and that of the nested domain was 10 km. In this study, model simulation results were compared with the Climate Forecast System Reanalysis (CFSR) data set. Comparisons between predicted and control data were made through the use of standard statistical measurements. The results facilitated the determination of the best combination of options suitable for predicting each physics parameter. Then, the suggested best combinations were examined for seven other typhoons and the solutions were confirmed. Finally, the best combination was compared with other introduced combinations for wind-speed prediction for typhoon Washi in 2011. The contribution of this study is to have attention to the heat fluxes besides the other parameters. The outcomes showed that the suggested combinations are comparable with the ones in the literature.


Author(s):  
Н.P. Ivus ◽  
E.V. Agayar ◽  
L.M. Hurska ◽  
А.В. Semergei-Chumachenko

Introduction. Nowadays the problem of storm winds appears to be a very relevant one in those spheres of human activities related to safety of human living, coastal infrastructure, seafaring, aviation etc. One of the conditions for successful forecasting of strong winds is familiarization with wind characteristics of the study area and with synoptic conditions causing them. The below listed results of research form continuation of previous works for search of a better synoptic classification reflecting completeness of macroscale baric processes causing formation of winds, including strong winds, over the South of Ukraine and also providing an opportunity to forecast winds in a more accurate manner. The purpose of this publication consists in analysis of interaction of large-scale atmospheric circulation with formation of unfavorable weather conditions (strong and very strong winds) on the north-west coast of the Black Sea. Methods and results. The impact of storm winds is significant for functioning of the national economic complex of the North-Western Black Sea region. In order to investigate this effect there were fifty seven cases of wind amplification up to criterion of strong ≥ 15 m·s-1 and very strong ≥ 25 m·s-1 selected within the Odessa region during the period from October to March in 2011 – 2014. Indexes of Katz circulation for isobaric surface of 500 hPa were calculated as per the data of synoptic archive for the cases with wind speed of ≥ 15 m·s-1. A more detailed study of the structure of macrocirculation processes under strong winds, except for Katz indexes, is provided by means of classification and calendar of successive change of elementary circulation mechanisms (ECM) in the Northern hemisphere according to Dzerdzeyevskyi B.L. and typification of synoptic processes developed at the Department of Theoretical Meteorology and Meteorological Forecasts of OSENU. It was determined that strong and very strong winds often occur in southern and central regions, particularly at the stations located on the shores of seas and estuaries (Bilgorod-Dnistrovskyi, Ust-Dunaysk, Pivdennyi port). Meridional type of atmospheric circulation (77.2%) creates favourable conditions for wind amplification in the North-Western part of the Black Sea up to the criterion of strong and very strong one, zonal type of circulation constitutes 22.8% from the total number of cases. Meridional type of circulation is mainly represented by mixed and western forms – (24.6%) and (22.8%) respectively. Main types of synoptic situations (5, 6) of Katz typification that used to cause strong winds were revealed. Most frequently strong wind was observed while moving of cyclonic vortexes from the South (ECM type – 12a, 13z) and in the area of cyclones and anticyclones interaction. Conclusion. It was found that wind speed amplification in the South of Ukraine up to the criteria of strong and very strong one mainly occurs due to the meridional type of atmospheric circulation which is dominated by mixed or western forms of circulation as per Katz typification, ECM type 12a and 13z according to Dzerdzeyevskyi B.L. and types 5 (subtype 5.2) and 6 (all subtypes depending on ECM) as per synoptic typification of OSENU. Directions for further research should include the following. The conclusions have preliminary character and need confirmation on the basis of bigger scope of statistical data.


2008 ◽  
Vol 38 (6) ◽  
pp. 1313-1326 ◽  
Author(s):  
Naoto Kihara ◽  
Hiromaru Hirakuchi

Abstract A boundary layer model for evaluating sensible and latent heat fluxes over a mature sea accounting for sea spray effects at wind speeds of up to 28 m s−1 is presented. Heat exchange across the ocean surface controls the development of tropical cyclones, and Emanuel’s theory suggests that the ratio of the exchange coefficient of total enthalpy to the drag coefficient should be greater than 0.75 to maintain the intensity of tropical cyclones. However, traditional bulk algorithms predict a monotonic decrease in this ratio with increasing wind speed, giving a value of less than 0.5 under tropical cyclone conditions. The present model describes a decrease in the ratio with increasing wind speed under weak to moderate winds (<20 m s−1), and a plateau at approximately 0.7 under strong winds (>20 m s−1).


2019 ◽  
Vol 32 (12) ◽  
pp. 3451-3470 ◽  
Author(s):  
Lejiang Yu ◽  
Shiyuan Zhong

AbstractStrong wind events (SWEs) over Antarctica and its surrounding oceans are investigated using gridded surface wind data from the ERA-Interim for the 1979–2017 period. Throughout the year, SWEs are more prevalent over the coastal region of East Antarctica where mean surface wind speeds are also higher. The occurrences of SWEs appear to be accompanied by positive anomalies in surface temperature and negative (positive) anomalies in mean sea level pressure related to cyclone (anticyclone) activity over the Ronne and Ross Ice Shelves and coastal regions (the inland areas of East Antarctica). The interannual variability of the SWE occurrences appears to be related to the southern annular mode (SAM) and, to a lesser degree, ENSO. The trends of SWE in the recent four decades exhibit considerable regional variations that are consistent with the trends in seasonal mean wind speed and surface air temperature, and can be largely explained by the variations in the sea level pressure trends across the region.


2019 ◽  
Vol 100 (6) ◽  
pp. 977-986
Author(s):  
Clifford F. Mass ◽  
Robert Conrick ◽  
Nicholas Weber ◽  
Joseph P. Zagrodnik

AbstractOn 27 January 2018, a highly localized, strong wind event occurred along the north shore of Lake Quinault, Washington. The resulting loss of large old-growth trees in a roughly 0.5-km2 region led to blocked roads and power outages. Nearby surface stations did not record anomalous winds, and no tree damage was reported in the surrounding region. Based on public accounts and a nearby seismometer, it appears that the strong winds lasted less than 10 min. Surface and aerial damage surveys showed that the trees fell from a different direction (northerly) than the synoptic or mesoscale f low (southwesterly to southeasterly). Based on high-resolution Weather Research and Forecasting (WRF) Model simulations, it appears that the damaging northerly winds were the result of a strong atmospheric rotor produced by a high-amplitude mountain wave. A simulation with 148-m grid spacing produced a rotor at the same time and location as the treefalls. Synoptic analysis and the high-resolution simulation showed that moderately strong southeasterly flow and a stable layer associated with the approaching occluded front interacted with a ∼750-m-high upstream mountain ridge to produce the mountain wave and associated rotor circulation. The combination of an inversion and strong shear at and above the upstream ridge were outliers in a climatology of soundings from the nearby Quillayute rawinsonde site, suggesting that such intense mountain-wave rotors are unusual in this valley.


2018 ◽  
Vol 66 (1) ◽  
pp. 79-86
Author(s):  
Ashik Imran ◽  
Ishtiaque M Syed ◽  
SM Quamrul Hassan ◽  
Kh Hafizur Rahman

Tropical cyclones (TCs) over Bay of Bengal (BoB) have significant socio-economic impacts on the countries bordering the BoB. In this study, we have examined the structure and thermodynamic features of the TC Hudhud (7th -14th October, 2014) using WRF model. Simulated outputs are in good agreement with the available observations of India Meteorological Department and Joint Typhoon warning Center. At maximum intensity stage, the system’s horizontal size is found around 690 km. Wind and vorticity distributions capture the circulation of the system very well. Most strong winds of 60 ms−1 are extended vertically from 850 hPa to about 700 hPa. Simulation has shown intensification of the system above 200 hPa with wind speed of about 30ms−1. Relative humidity of the order of 90 % is found up to 400 hPa. Dhaka Univ. J. Sci. 66(1): 79-86, 2018 (January)


2014 ◽  
Vol 2 (1) ◽  
pp. 287-313 ◽  
Author(s):  
T. Haghroosta ◽  
W. R. Ismail ◽  
P. Ghafarian ◽  
S. M. Barekati

Abstract. The Weather Research Forecast (WRF) model includes various configuration options related to physics parameters, which can affect the performance of the model. In this study, different numerical experiments were conducted to determine the best combination of physics parameterization schemes for the simulation of sea surface temperatures, latent heat flux, sensible heat flux, precipitation rate, and wind speed that characterized typhoons. Through these experiments, several physics parameterization options within the WRF model were exhaustively tested for typhoon Noul, which had originated in the South China Sea in November 2008. The model domain consisted of one coarse domain and one nested domain. The resolution of the coarse domain was 30 km, and that of the nested domain was 10 km. In this study, model simulation results were compared with the Climate Forecast System Reanalysis (CFSR) data set. Comparisons between predicted and control data were made through the use of standard statistical measurements. The results facilitated the determination of the best combination of options suitable for predicting each physics parameter. Then, the suggested best combinations were examined for seven other typhoons and the solutions were confirmed. Finally, the best combination was compared with other introduced combinations for wind speed prediction for typhoon Washi (2011). The contribution of this study is to have attention to the heat fluxes besides the other parameters. The outcomes showed that the suggested combinations are comparable with the ones in the literature.


2021 ◽  
pp. 1-11
Author(s):  
Hataek Kwon ◽  
Seong-Joong Kim ◽  
Sang-Woo Kim ◽  
Sinu Kim

Abstract The topographical effect on a strong wind event that occurred on 7 January 2013 at King Sejong Station (KSJ), Antarctica, was investigated using the Polar Weather Research and Forecasting (WRF) model. Numerical experiments applying three different terrain heights of the Antarctic Peninsula (AP) were performed to quantitatively estimate the topographical effect on the selected strong wind event. The experiment employing original AP topography successfully represented the observed features in the strong wind event, both in terms of peak wind speed (by ~94%; ~19.7 m/s) and abrupt transitions of wind speed. In contrast, the experiment with a flattened terrain height significantly underestimated the peak wind speeds (by ~51%; ~10.4 m/s) of the observations. An absence of AP topography failed to simulate both a strong discontinuity of sea-level pressure fields around the east coast of the AP and a strong south-easterly wind over the AP. As a result, the observed downslope windstorm, driven by a flow overriding a barrier, was not formed at the western side of the AP, resulting in no further enhancement of the wind at KSJ. This result demonstrates that the topography of the AP played a critical role in driving the strong wind event at KSJ on 7 January 2013, accounting for ~50% of the total wind speed.


Author(s):  
Larry Pratt ◽  
E. Jason Albright ◽  
Irina Rypina ◽  
Houshuo Jiang

The Lagrangian and Eulerian structure and dynamics of a strong wind event in the Tokar Gap region are described using a WRF model hindcast for 2008. Winds in the Tokar Gap reach 25 m s-1 and remain coherent as a jet far out over the Red Sea, whereas equally strong wind jets occurring in neighboring gaps are attenuated abruptly by a jump-like hydraulic transition that occur just offshore of the Sudan coast. The transition is made possible by the supercritical nature of the jets, which are fed by air that spills down from passes at relatively high elevation. By contrast, the spilling flow in the ravine-like Tokar Gap does not become substantially supercritical and therefore does not undergo a jump, and also carries more total horizontal momentum. The Tokar Wind Jet carries some air parcels across the Red Sea and into Saudi Arabia, whereas air parcel trajectories in the neighboring jets ascend as they cross through the jumps, then veer sharply to the southeast and do not cross the Red Sea. The mountain parameter Nh/U is estimated to lie in the rage 1.0-4.0 for the general region, a result roughly consistent with a primary gap jet having a long extension, and supercritical jets spilling down from higher elevation passes. The strong event is marked by the formation of a cyclonic cell near the upstream entrance to the Tokar Gap, a feature absent from the more moderate events that occur throughout the summer. The cell contains descending air parcels that are fed into the primary and secondary jets. An analysis of the Bernoulli function along air parcel trajectories reveals an approximate balance between the loss of potential energy and gain of internal energy and pressure, with surprisingly little contribution from kinetic energy, along the path of the descending flow. All jets attain the critical wind speed nominally required to loft dust into the atmosphere, though only the Tokar Gap has a broad, delta region with plentiful deposits of silt.


Sign in / Sign up

Export Citation Format

Share Document