scholarly journals Characterization and Evaluation of Zeolite A/Fe3O4 Nanocomposite as a Potential Adsorbent for Removal of Organic Molecules from Wastewater

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Emmanuel Nyankson ◽  
Jonas Adjasoo ◽  
Johnson Kwame Efavi ◽  
Reuben Amedalor ◽  
Abu Yaya ◽  
...  

In this work, zeolite (Z) and Z-Fe3O4 nanocomposite (Z-Fe3O4 NC) have been synthesized. The Fe3O4 nanoparticles were synthesized using the extract from maize leaves and ferric and ferrous chloride salts and encapsulated into the zeolite framework. The nanocomposite (Z-Fe3O4 NC) was characterized using X-ray diffractometer (XRD), Fourier-transform infrared (FT-IR) spectroscopy, energy-dispersive X-ray (EDX) spectroscopy, and scanning electron microscopy (SEM). The potential of Z-Fe3O4 NC as an adsorbent for removing methylene blue molecules (MB) from solution was examined using UV-Vis and kinetic and equilibrium isotherm models. The adsorption data fitted best with the pseudo-second-order model and Weber and Morris model, indicating that the adsorption process was chemisorption, while the Weber and Morris described the rate-controlling steps. The intraparticle diffusion model suggests that the adsorption processes were pore and surface diffusion controlled. The Langmuir isotherm model best describes the adsorption process indicating homogeneous monolayer coverage of MB molecules onto the surface of the Z-Fe3O4 NC. The maximum Langmuir adsorption capacity was 2.57 mg/g at 25°C. The maximum adsorption efficiency was 97.5%. After regeneration, the maximum adsorption efficiency achieved at a pH of 7 was 82.6%.

Author(s):  
Li Cong ◽  
Lingling Feng ◽  
Xinlai Wei ◽  
Jie Jin ◽  
Ke Wu

The activated carbon was prepared from sycamore bark by activation of zinc chloride. The absorbing effect of activated carbon on Congo red wastewater is studied. The characteristics of sycamore bark activated carbon were characterized by SEM and BET. The effects of adsorbent dosage, time, and shaking speed on the adsorption properties of Congo red by sycamore bark activated carbon were studied. The isotherm, kinetics, and thermodynamics of adsorption were explored. The results revealed that the activated carbon contain a large apparent mesopores. Adsorption efficiency was increased with enhancing the adsorption dosage and time. The removal rate of Conge red reached to 98.2% under room temperature with adsorbent dosage of 3.0 g/L, adsorption time of 120 min, shaking speed of 60r/min. The adsorption of Congo red on sycamore bark activated carbon was followed Langmuir isotherm model and Lagergren pseudo-second order kinetics model. The adsorption was spontaneous, endothermic, and the entropy was increasing in the adsorption process.


2018 ◽  
Vol 34 (3) ◽  
pp. 1283-1296
Author(s):  
Najah Ayad Alshammari ◽  
Ehteram A. Noor ◽  
Jamilah Mohammad Alahmari

The effect of Amberlite-IR 120 H+ resin to remove some organic compounds (N-alkyl pyridinium salts) from aqueous solutions at certain conditions was investigated. The effect of resin dosage, contact time, adsorbate concentration, ionic strength and solution temperature on the adsorption efficiency was examined. The experimental data collected generally proved that the adsorption efficiency decreased as the alkyl chain increased. The thermodynamic equilibrium parameters of the adsorption processes were evaluated and showed that the adsorption process is spontaneous, disordered and exothermic. Langmuir, Freundlich, Temkin and Dubinin–Radushkevich (D.R) isotherm models were applied based on the batch method. Freundlich, Temkin and D. R gave bilinear segments model based on the adsorbate initial concentrations except that for compound III where it gave straight of one segment for Temkin adsorption isotherm. Overall, Amberlite-IR 120 H+ resin is effective in removing some N-alkyl pyridinium salts from an aqueous solution.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Hizkeal Tsade Kara ◽  
Sisay Tadesse Anshebo ◽  
Fedlu Kedir Sabir ◽  
Getachew Adam Workineh

The study was focused on the preparation and characterizations of sodium periodate-modified nanocellulose (NaIO4-NC) prepared from Eichhornia crassipes for the removal of cationic methylene blue (MB) dye from wastewater (WW). A chemical method was used for the preparation of NaIO4-NC. The prepared NaIO4-NC adsorbent was characterized by using X-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscope (SEM), energy-dispersive X-ray (EDX), and Brunauer–Emmett–Teller (BET) instruments. Next, it was tested to the adsorption of MB dye from WW using batch experiments. The adsorption process was performed using Langmuir and Freundlich isotherm models with maximum adsorption efficiency (qmax) of 90.91 mg·g−1 and percent color removal of 78.1% at optimum 30 mg·L−1, 60 min., 1 g, and 8 values of initial concentration, contact time, adsorbent dose, and solution pH, respectively. Pseudo-second-order (PSO) kinetic model was well fitted for the adsorption of MB dye through the chemisorption process. The adsorption process was spontaneous and feasible from the thermodynamic study because the Gibbs free energy value was negative. After adsorption, the decreased values for physicochemical parameters of WW were observed in addition to the color removal. From the regeneration study, it is possible to conclude that NaIO4-NC adsorbent was recyclable and reused as MB dye adsorption for 13 successive cycles without significant efficient loss.


Author(s):  
Teba H. Mhawesh ◽  
Ziad T. Abd Ali

The potential application of granules of Granular brick waste as a low-cost sorbent for removal of Pb+2 ions from aqueous solutions has been studied. The properties of Granular brick waste were determined through several tests such as X-Ray diffraction , Energy dispersive X-ray, Scanning electron microscopy , and surface area. In batch tests, the influence of several operating parameters including contact time, initial concentration, agitation speed, and the dose of GBW was investigated. The best values of these parameters that provided maximum removal efficiency of lead (89.5 %) were 2.5 hr, 50 mg/L, 250 rpm, and 1.8 g/100mL, respectively. The sorption data obtained by batch experiments subjected to the three isotherm models called Langmuir, Freundlich and   Elovich. The results showed that the Langmuir isotherm model described well the sorption data (R2= 0.9866) in comparison with other models. The kinetic data were analyzed using two kinetic models called pseudo_first_order and pseudo_second_order. The pseudo-second-order kinetic model was found to agree well with the experimental data.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 898
Author(s):  
Ximena Jaramillo-Fierro ◽  
Silvia González ◽  
Fernando Montesdeoca-Mendoza ◽  
Francesc Medina

Adsorption is an effective method of removing harmful pollutants from air and water. In the present study, zeolites prepared by sol-gel method from two Ecuadorian clays were combined with precursor clays and the ZnTiO3/TiO2 semiconductor for adsorbing methylene blue (MB) as a water contaminant. The synthesized compounds were characterized using powder X-ray diffraction, X-ray fluorescence, scanning electron microscopy, energy dispersive X-ray, and surface area measurement. These compounds were combined to form cylindrical extrudates of 0.2 cm (diameter) and 1.0 cm (length). The adsorption characteristics of the composites were measured using batch sorption studies as a function of pH, initial concentration, and contact time. The pseudo-second-order model and the Langmuir isotherm model were better suited to the adsorption process. The equilibrium state was achieved around 180 min of adsorption, and a pH of 7 was established as the optimal operating condition. The maximum adsorption values of the dye were obtained with the composites derived from G-Clay, whose average adsorption capacity was 46.36 mg g−1, in contrast with composites derived from R-Clay, whose average adsorption value was 36.24 mg g−1. The results reflect that synthesized composites could be used potentially for the removal of cationic dye from wastewater.


2021 ◽  
Author(s):  
Maoling Wu ◽  
Ling Ding ◽  
Jun Liao ◽  
Yong Zhang ◽  
Wenkun Zhu

Abstract In this work, the efficient extraction of uranium in solution using Al2O3-SiO2-T was reported. Kinetics and isotherm models indicated that the removal process of uranium onAl2O3-SiO2-T accorded with pseudo-second-order kinetic model and Langmuir isotherm model, which showed that the adsorption process was a uniform mono-layer chemical behavior. The maximum adsorption capacity of Al2O3-SiO2-T reached 738.7 mg g-1, which was higher than AlNaO6Si2 (349.8 mg g-1) and Al2O3-SiO2-NT (453.1 mg g-1), indicating that the addition of template could effectively improve the adsorption performance of Al2O3-SiO2 to uranium. Even after five cycles of adsorption-desorption, the removal percentage of uranium on Al2O3-SiO2-T remained 96%. Besides, the extraction efficiency of uranium on Al2O3-SiO2-T was 72.5% in simulated seawater, which suggested that the Al2O3-SiO2-T was expected to be used for uranium extraction from seawater. Further, the interaction mechanism between Al2O3-SiO2-T and uranium species was studied. The results showed that the electrostatic interaction and complexation played key roles in the adsorption process of Al2O3-SiO2-T to uranium.


2012 ◽  
Vol 18 (4-1) ◽  
pp. 497-508 ◽  
Author(s):  
Hussein Bahrami ◽  
Jaber Safdari ◽  
Ali Moosavian ◽  
Meisam Torab-Mostaedi

In this study, the adsorption of HF gas by three types of activated carbon has been investigated under vacuum condition. The effects of experimental parameters such as initial pressure of the HF gas, contact time and temperature on adsorption process have been investigated. The results showed that the adsorption of the HF gas onto activated carbon increased by increasing initial pressure of gas, while it decreased with increase in temperature. The Freundlich isotherm model fitted the equilibrium data better than the other isotherm models. Using Langmuir isotherm model, the maximum adsorption capacities of the first type, the second type and third type of activated carbon were 226.4, 268.8 and 258.9 mg/g, respectively. Experimental data were also evaluated in terms of kinetic characteristics of adsorption and it was found that the adsorption process followed well pseudo-second-order kinetics. Thermodynamic parameters, the change of free energy (?G?), enthalpy (?H?) and entropy (?S?) of adsorption were calculated at the temperature range of 28-55?C. The results showed that the adsorption of HF on activated carbon is feasible, spontaneous and exothermic.


2019 ◽  
Vol 31 (10) ◽  
pp. 2233-2239 ◽  
Author(s):  
Patra Vasundhara Devi ◽  
M. Suneetha ◽  
K. Ravindhranath

Nitric acid activated carbons prepared from the barks of Limonia acidissima plant (NALABC) and stems of Hibiscus cannabinus plant (NAHCSC) are investigated as adsorbents for the removal of Cu(II) ions from waste water using batch methods of extraction. Various extraction conditions namely, pH, time of equilibration, sorbent concentration, initial concentration of Cu(II) ions and temperature, are optimized for the maximum removal. Substantial amounts of Cu(II) are extracted in the pH range: 3 to 9 and adsorption capacities are 19.6 mg/g for NALABC and 29.4 mg/g for NAHCSC, which are more than many active carbons developed in the previous works. It is interesting to note that the adsorbents are effective in acidic, neutral and also in basic conditions of the water samples and thus paving the way for applying these adsorbents in wide pH ranges of diverse samples. Five-fold excess of common co-ions that are normally present in water, have marginally affected the % removal. Thermodynamic parameters are evaluated for the spontaneity and nature of adsorption processes. The adsorption phenomenon is analyzed using Langmuir and Freundlich isotherm models and noted that Langmuir isotherm model suits better indicating the uniform and mono-layer nature of adsorption. Kinetics of adsorption is analyzed and found that pseudo second-order kinetics preferably explains the adsorption of Cu(II). The spent NALABC and NAHCSC can be regenerated and subsequently used. The adsorbents developed are found to be effective in removing Cu(II) ions from the real water samples collected from polluted lakes and copper based industries.


In the present study application of MCM-41 for removal of phenol was investigated. MCM-41nano-adsorbent was synthesized and characterized by FTIR, XRD and SEM analysis. Adsorption isotherm experiment was performed in batch shake flask. The experimental data were analyzed using various isotherm models. Result revealsthat,Langmuir isotherm model fitted the data very well for the removal of phenol by the MCM-41 adsorbents. The calculated dimensionless separation factor, RL indicates that the adsorption of phenol onto MCM-41 was favorable. Pseudo-first order, pseudo-second order kinetic equations and intraparticle diffusion model were applied to analyze the adsorption kinetics of the MCM-41 at different initial phenol concentrations. It was found that the adsorption of phenol on to the MCM-41 follows the pseudo-second order kinetic. At an initial phenol concentration of 130 mgl-1, more than 99% phenol, 93% COD along with 96% of toxicity removal were achieved. Thus, the synthesized mesoporous MCM-41 proved to be a potential candidate for removal of phenol from industrial wastewater.


2012 ◽  
Vol 9 (3) ◽  
pp. 1457-1480 ◽  
Author(s):  
R. Bhaumik ◽  
N. K. Mondal ◽  
B. Das ◽  
P. Roy ◽  
K. C. Pal ◽  
...  

A new medium, eggshell powder has been developed for fluoride removal from aqueous solution. Fluoride adsorption was studied in a batch system where adsorption was found to be pH dependent with maximum removal efficiency at 6.0. The experimental data was more satisfactorily fitted with Langmuir isotherm model. The kinetics and the factor controlling adsorption process fully accepted by pseudo-second-order model were also discussed. Eawas found to be 45.98 kJmol-1by using Arrhenius equation, indicating chemisorption nature of fluoride onto eggshell powder. Thermodynamic study showed spontaneous nature and feasibility of the adsorption process with negative enthalpy (∆H0) value also supported the exothermic nature. Batch experiments were performed to study the applicability of the adsorbent by using fluoride contaminated water collected from affected areas. These results indicate that eggshell powder can be used as an effective, low-cost adsorbent to remove fluoride from aqueous solution as well as groundwater.


Sign in / Sign up

Export Citation Format

Share Document