scholarly journals Design of a Compact Ultrawideband U-Shaped Slot Etched on a Circular Patch Antenna with Notch Band Characteristics for Ultrawideband Applications

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Jiwan Ghimire ◽  
Dong-You Choi

Interference between ultrawideband (UWB) antennas and other narrowband communication systems has spurred growth in designing UWB antennas with notch characteristics and complicated designs consisting of irregular etched slots and larger physical size. This article presents a simplified notched design method for existing UWB antennas exhibiting four frequency-band-rejecting characteristics. The investigation has been conducted by introducing four semicircular U-shaped slot structures based on a theoretical formulation. The formulation is validated with the equivalent LC lumped parameters responsible for yielding the notched frequency. A novel feature of our approach is that the frequency notch can be adjusted to the desired values by changing the radial length based on the value calculated using a derived formula for each semietched U-slot, which is very simple in structure and design. Additionally, by introducing the rectangular notch at the ground plane, the upper passband spectrum is suppressed while maintaining the wide impedance bandwidth of the antenna applicable for next-generation wireless communications, 5G. The measured result shows that the antenna has a wide impedance bandwidth of 149% from 2.9 to 20 GHz, apart from the four-notched frequencies at 3.49, 3.92, 4.57, and 5.23 GHz for a voltage standing wave ratio (VSWR) of <2 rejecting the Worldwide Interoperability for microwave Access (WiMAX) band at (3.38-3.7 GHz), the European C-band at (3.84-4.29 GHz), the Indian national satellite (INSAT) at (4.47-4.92 GHz), and wireless local area networks (WLANs) at (5.09-5.99 GHz). Measured and simulated experimental results reveal that the antenna exhibits nearly an omnidirectional pattern in the passband, low gain at the stopband, and good radiation efficiency within a frequency range. The LC equivalent notched frequency has been proposed by analyzing the L and C equivalent formula, and it has been validated with simulated and measured results. The measurement and simulated results correspond well at the LC equivalent notch band rejecting the existing narrowband systems.

2015 ◽  
Vol 8 (8) ◽  
pp. 1197-1206 ◽  
Author(s):  
Seyed Saeed Mirmosaei ◽  
Seyed Ebrahim Afjei ◽  
Esfandiar Mehrshahi ◽  
Mohammad M. Fakharian

In this paper, an ultra-wideband (UWB) planar monopole antenna with impedance bandwidth from 2.83 to 11.56 GHz and dual band-notched characteristics is presented. The antenna consists of a small rectangular ground plane, a bat-shaped radiating patch, anda 50-Ω microstrip line. The notched bands are realized by introducing two different types of structures. The half-wavelength spiral-slots are etched on the radiating patch to obtain a notched band in 5.15 5.925 GHz for WLAN, HIPERLAN, and DSRC systems. Based on the single band-notched UWB antenna, the second notched band is realized by etching a folded stepped impedance resonator as defected ground structure on the ground plane for WiMAX and C-band communication systems. The notched frequencies can be adjusted by altering the length of resonant cells. Surface current distributions and equivalent circuit are used to illustrate the notched mechanism. The performance of this antenna both by simulation and by experiment indicates that the proposed antenna is suitable and a good candidate for UWB applications.


Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 778
Author(s):  
Iftikhar Ahmad ◽  
Houjun Sun ◽  
Umair Rafique ◽  
Zhang Yi

This paper presents a design of a triangular slot-loaded planar rectangular antenna array for wideband millimeter-wave (mm-wave) 5G communication systems. The proposed array realizes an overall size of 35.5 × 14.85 mm2. To excite the array elements, a four-way broadband corporate feeding network was designed and analyzed. The proposed array offered a measured impedance bandwidth in two different frequency ranges, i.e., from 23 to 24.6 GHz and from 26 to 45 GHz. The single-antenna element of the array consists of a rectangular patch radiator with a triangular slot. The partial ground plane was used at the bottom side of the substrate to obtain a wide impedance bandwidth. The peak gain in the proposed array is ≈12 dBi with a radiation efficiency of >90%. Furthermore, the array gives a half-power beamwidth (HPBW) of as low as 12.5°. The proposed array has been fabricated and measured, and it has been observed that the measured results are in agreement with the simulated data.


In this paper,CPW fed Trapezoid shape patch antenna is analyzed and investigated for Wireless Local Area Network (WLAN) application. The proposed antenna is fabricated on FR4 substrate having dimensions of 19mm ×21.2mm ×1.6mm. It resonates at 5.44 GHz frequency with peak return loss of 25.8 dB. The parametric study of proposed antenna is carried out to understand the effect of different values of ground plane on the impedance bandwidth, return loss of the antenna andalso to optimize the antenna parameters. The CPW-fed is used to enhance the bandwidth and to reduce the return loss of the antenna. The importance of different design parameters like current distribution, S-parameter, gain, and radiation pattern are studied. The results of the proposed antenna are useful for WLAN Application.


2020 ◽  
Vol 10 (13) ◽  
pp. 4546
Author(s):  
Tarek S. Mneesy ◽  
Radwa K. Hamad ◽  
Amira I. Zaki ◽  
Wael A. E. Ali

This paper presented the design and implementation of a 60 GHz single element monopole antenna as well as a two-element array made of two 60 GHz monopole antennas. The proposed antenna array was used for 5G applications with radiation characteristics that conformed to the requirements of wireless communication systems. The proposed single element was designed and optimized to work at 60 GHz with a bandwidth of 6.6 GHz (57.2–63.8 GHz) and a maximum gain of 11.6 dB. The design was optimized by double T-shaped structures that were added in the rectangular slots, as well as two external stubs in order to achieve a highly directed radiation pattern. Moreover, ring and circular slots were made in the partial ground plane at an optimized distance as a defected ground structure (DGS) to improve the impedance bandwidth in the desired band. The two-element array was fed by a feed network, thus improving both the impedance bandwidth and gain. The single element and array were fabricated, and the measured and simulated results mimicked each other in both return loss and antenna gain.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Mengfei Xiong ◽  
Junping Duan ◽  
Binzhen Zhang

A simplified notched design method for the Vivaldi antenna is exhibiting high frequency-band-selectivity characteristics. By suitably introducing half-wavelength resonator (HWR) and complementary capacitively loaded loop (CCLL), the notched-band selectivity is promoted while maintaining the wide impedance bandwidth of the antenna applicable for wireless communications. HWR is bent in the middle to focus the first notch pole, and the second notch pole is obtained by CCLL on the radiating patch. Additionally, the resonant frequency of the notched pole can be determined by the position and size of two loaded resonators in theoretical analysis, thereby realizing a wideband antenna with the desired notched band. Finally, the Vivaldi antenna of loading resonator was fabricated to verify the feasibility of this new method. Measured and simulated experimental results reveal that the antenna exhibits directional pattern in the passband, low gain at the band-rejection, and excellent selectivity within a frequency range. The simulation and measurement results are in good agreement. The proposed antenna achieves S11<−10 dB in 2.6–13.7 GHz and a notch band from 4.49 to 6.64 GHz to reject IEEE 802.11a and HIPERLAN/2 frequency band. Moreover, the proposed antenna has good frequency selectivity, and its gain is good enough in the passband with peak gain up to 10.8 dBi. This antenna design presents frequency suitability, demonstrating that a UWB antenna with a controllable notched band has been realized.


2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Chien-Jen Wang ◽  
Dai-Heng Hsieh

A small dual-band monopole antenna with coplanar waveguide (CPW) feeding structure is presented in this paper. The antenna is composed of a meandered monopole, an extended conductor tail, and an asymmetrical ground plane. Tuning geometrical structure of the ground plane excites an additional resonant frequency band and thus enhances the impedance bandwidth of the meandered monopole antenna. Unlike the conventional monopole antenna, the new resonant mode is excited by a slot trace of the CPW transmission line. The radiation performance of the slot mode is as similar as that of the monopole. The parametrical effect of the size of the one-side ground plane on impedance matching condition has been derived by the simulation. The measured impedance bandwidths, which are defined by the reflection coefficient of −6 dB, are 186 MHz (863–1049 MHz, 19.4%) at the lower resonant band and 1320 MHz (1490–2810 MHz, 61.3%) at the upper band. From the results of the reflection coefficients of the proposed monopole antenna, the operated bandwidths of the commercial wireless communication systems, such as GSM 900, DCS, IMT-2000, UMTS, WLAN, LTE 2300, and LTE 2500, are covered for uses.


Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2141
Author(s):  
Junghoon Cha ◽  
Choon-Seong Leem ◽  
Ikhwan Kim ◽  
Hakyoung Lee ◽  
Hojun Lee

In this study, we proposed an indoor broadband dual-polarized 2 × 2 MIMO (multiple-input and multiple-output) antenna having dimensions of 240 mm × 200 mm × 40 mm, for application in 5G wireless communication systems. The proposed antenna comprised two vertically polarized circular monopole antennas (CMAs), two horizontally polarized modified rectangular dipole antennas (MRDAs), and a ground plane. The distance between the two MRDAs (MRDA1 and MRDA2) was 70.5 mm and 109.5 mm in the horizontal (x-direction) and 109.5 mm vertical (y-direction) directions, respectively. Conversely, the distance between the two CMAs (CMA1 and CMA2) was 109.5 mm and 70.5 mm in the horizontal (x-direction) and vertical (y-direction) directions, respectively. While the CMAs achieved broadband characteristics owing to the optimal gap between the dielectric and the driven radiator using a parasitic element, the MRDAs achieved broadband owing to the optimal distance between the dipole antennas. The observations in this experiment confirmed that the proposed could operate in the 5G NR n46 (5.15–5.925 GHz), n47 (5.855–5.925 GHz), n77 (3.3–4.2 GHz), n78 (3.3–3.8 GHz), and the n79 (4.4–5 GHz) bands. Moreover, it exhibited a wide impedance bandwidth (dB magnitude of ) of 101% in the 2.3–7 GHz frequency range, high isolation (dB magnitude of ), low envelope coefficient correlation (ECC), gain of over 5 dB, and average radiation efficiency of 87.19%, which verified its suitability for application in sub-6 GHz 5G wireless communication systems.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Akrem Asmeida ◽  
Zuhairiah Zainal Abidin ◽  
Shaharil Mohd Shah ◽  
Muhammad Ramlee Kamarudin ◽  
Norun Abdul Malek ◽  
...  

Producing a suitable impedance matching between the radiating element and the feedline is the prior hurdle to overcome for a wideband antenna with circular polarisation designs. This study presents a novel antenna consisting of a defected ground structure (DGS) and a crescent-slot radiating patch for broad impedance bandwidth. In addition, a narrow rectangular slot was etched on the ground plane for antenna compactness and outcomes improvement. In order to examine the reliability, two different numerical softwares were compared based on the antenna’s basic structure. Apart from this, an equivalent circuit of the proposed prototype is modelled logically using ADS 2016. The numerical results demonstrate that the impedance bandwidth was about 74.6% for < −10 dB, while the 3 dB axial ratio bandwidth greater than 53% was achieved. In the operational bandwidth of the design, good impedance matching and high efficiency were seen, which shows that this design is appropriate for modern wireless communication systems in ISM and GSM bands.


2015 ◽  
Vol 9 (1) ◽  
pp. 133-141 ◽  
Author(s):  
Sandeep Kumar Palaniswamy ◽  
Malathi Kanagasabai ◽  
Shrivastav Arun Kumar ◽  
M. Gulam Nabi Alsath ◽  
Sangeetha Velan ◽  
...  

This paper presents the design, testing, and analysis of a clover structured monopole antenna for super wideband applications. The proposed antenna has a wide impedance bandwidth (−10 dB bandwidth) from 1.9 GHz to frequency over 30 GHz. The clover shaped antenna with a compact size of 50 mm × 45 mm is designed and fabricated on an FR4 substrate with a thickness of 1.6 mm. Parametric study has been performed by varying the parameters of the clover to obtain an optimum wide band characteristics. Furthermore, the prototype introduces a method of achieving super wide bandwidth by deploying fusion of elliptical patch geometries (clover shaped) with a semi elliptical ground plane, loaded with a V-cut at the ground. The proposed antenna has a 14 dB bandwidth from 5.9 to 13.1 GHz, which is suitable for ultra wideband (UWB) outdoor propagation. The prototype is experimentally validated for frequencies within and greater than UWB. Transfer function, impulse response, and group delay has been plotted in order to address the time domain characteristics of the proposed antenna with fidelity factor values. The possible applications cover wireless local area network, C-band, Ku-band, K-band operations, Worldwide Interoperability for Microwave Access, and Wireless USB.


2017 ◽  
Vol 9 (10) ◽  
pp. 1983-1989
Author(s):  
Chen-Yang Shuai ◽  
Guang-Ming Wang ◽  
Ya-Wei Wang

A novel uniplanar wideband magneto-electric dipole antenna element is proposed in this paper. The proposed antenna is composed of the conventional bow-tie radiation patch as an electric dipole, a semi-circular loop, which works as a magnetic dipole, a coplanar ground plane, two directors with different lengths for enhancing gain, and a microstrip-to-coplanar stripline transition balun. The designed antenna adopts a small-size coplanar ground plane to achieve a uniplanar structure. Consequently, this method reduces the space size immensely and makes the antenna suitable for the array application. In addition, a tapered slot structure is utilized to improve impedance matching. The prototype of the proposed antenna was fabricated and measured. The measured results keep in good accordance with the simulated ones. The simulated results show that the proposed antenna obtains a broad impedance bandwidth of 60.5% from 2.25 to 4.20 GHz (voltage standing wave ratio [VSWR] ≤ 2) which can be applied for wireless local area network (WLAN) (2.4–2.484 GHz), worldwide interoperability for microwave access (WiMAX) (2.5–2.69/3.4–3.69 GHz), and long term evolution (LTE) (2.5–2.69 GHz). Meanwhile, the stable gain, low cross-polarization, stable unidirectional radiation patterns, and low back lobe are obtained within the operating frequency band. The array composed of the proposed antenna elements is also investigated in this paper.


Sign in / Sign up

Export Citation Format

Share Document