scholarly journals Shengjing Capsule Improves Spermatogenesis through Upregulating Integrin α6/β1 in the NOA Rats

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Jiamin Wang ◽  
Shankun Zhao ◽  
Lianmin Luo ◽  
Yangzhou Liu ◽  
Ermao Li ◽  
...  

Objective. To evaluate the therapeutic effect of Shengjing capsules on nonobstructive azoospermia (NOA) in the rat model. Methods. Twenty-five male Sprague–Dawley rats were randomly divided into five groups as follows (n=5 per group): normal group, NOA group, and three Shengjing capsule treatment groups (low-dose, medium-dose, and high-dose groups, respectively). HE staining and semen smear were performed to assess sperm quality. The expression levels of PI3K/AKT and integrin α6/β1 were measured by qRT-PCR and western blot analyses. Results. In the NOA group, almost all of the seminiferous tubules were vacuolated with a thin layer of basal compartment containing some spermatogonial stem cells. The counts of sperms in the NOA group were strongly lower than those of the normal group (P=0.0001). The expression of PI3K/AKT and integrin α6/β1 was scarcely expressed in the NOA group. All indexes mentioned above were significantly different from those of the medium- and high-dose groups (P=0.001, all). The sperm count of rats treated with Shengjing capsules was significantly higher than that of the NOA group (P=0.0001). The rats of Shengjing capsule groups had more layers of spermatogonial stem cells and spermatocytes, and some had intracavitary sperms. Conclusions. Shengjing capsules may be a promising therapeutic medicine for NOA. The underlying mechanisms might involve activating SSCs by upregulating the integrin α6/β1 expression via the PI3K/AKT pathway.

2003 ◽  
Vol 22 (3) ◽  
pp. 159-174 ◽  
Author(s):  
Jon N. Cammack ◽  
Randy D. White ◽  
Donovan Gordon ◽  
Jerome Gass ◽  
Lawrence Hecker ◽  
...  

Di-(2-ethylhexyl)phthalate (DEHP) was administered to 3- to 5-day-old male Sprague-Dawley rats by daily intravenous injections of 60, 300, or 600 mg/kg/day or by daily oral gavage of 300 or 600 mg/kg/day for 21 days. Histopathological evaluation and organ weight measurements were performed on some animals after 21 days of dosing (primary group) and later on the recovery group animals that were held without further treatment until sexual maturity at approximately 90 days of age. No effects of any type were observed in animals treated intravenously with 60 mg/kg/day. Testicular changes, consisting of a partial depletion of the germinal epithelium and/or decrease in diameter of seminiferous tubules, were present in all animals of the 300- and 600-mg/kg/day groups after the 21-day dosing period. Testes weight decreased and liver weight increased in these animals. Testes changes were dose-related and generally more severe among animals dosed orally versus intravenously. In the recovery animals, a residual DEHP-induced decrease in seminiferous tubule diameter was present in the testis of several animals dosed orally at 300 and 600 mg/kg/day, but not in animals dosed intravenously. There was no germinal cell depletion or Sertoli cell alteration observed in any dose group at any time. Notably, no effects on sperm count, sperm morphology, or sperm motility were observed at 90 days of age in any of the groups.


Reproduction ◽  
2008 ◽  
Vol 136 (5) ◽  
pp. 543-557 ◽  
Author(s):  
Pedro M Aponte ◽  
Takeshi Soda ◽  
Katja J Teerds ◽  
S Canan Mizrak ◽  
Henk J G van de Kant ◽  
...  

The access to sufficient numbers of spermatogonial stem cells (SSCs) is a prerequisite for the study of their regulation and further biomanipulation. A specialized medium and several growth factors were tested to study thein vitrobehavior of bovine type A spermatogonia, a cell population that includes the SSCs and can be specifically stained for the lectin Dolichos biflorus agglutinin. During short-term culture (2 weeks), colonies appeared, the morphology of which varied with the specific growth factor(s) added. Whenever the stem cell medium was used, round structures reminiscent of sectioned seminiferous tubules appeared in the core of the colonies. Remarkably, these round structures always contained type A spermatogonia. When leukemia inhibitory factor (LIF), epidermal growth factor (EGF), or fibroblast growth factor 2 (FGF2) were added, specific effects on the numbers and arrangement of somatic cells were observed. However, the number of type A spermatogonia was significantly higher in cultures to which glial cell line-derived neurotrophic factor (GDNF) was added and highest when GDNF, LIF, EGF, and FGF2 were all present. The latter suggests that a proper stimulation of the somatic cells is necessary for optimal stimulation of the germ cells in culture. Somatic cells present in the colonies included Sertoli cells, peritubular myoid cells, and a few Leydig cells. A transplantation experiment, using nude mice, showed the presence of SSCs among the cultured cells and in addition strongly suggested a more than 10 000-fold increase in the number of SSCs after 30 days of culture. These results demonstrate that bovine SSC self-renew in our specialized bovine culture system and that this system can be used for the propagation of these cells.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shuangyue Li ◽  
Huai Guan ◽  
Yan Zhang ◽  
Sheng Li ◽  
Kaixin Li ◽  
...  

Abstract Background N-hexane, with its metabolite 2,5-hexanedine (HD), is an industrial hazardous material. Chronic hexane exposure causes segmental demyelination in the peripheral nerves, and high-dose intoxication may also affect central nervous system. Demyelinating conditions are difficult to treat and stem cell therapy using bone marrow mesenchymal stem cells (BMSCs) is a promising novel strategy. Our previous study found that BMSCs promoted motor function recovery in rats modeling hexane neurotoxicity. This work aimed to explore the underlying mechanisms and focused on the changes in spinal cord. Methods Sprague Dawley rats were intoxicated with HD (400 mg/kg/day, i.p, for 5 weeks). A bolus of BMSCs (5 × 107 cells/kg) was injected via tail vein. Demyelination and remyelination of the spinal cord before and after BMSC treatment were examined microscopically. Cultured oligodendrocyte progenitor cells (OPCs) were incubated with HD ± BMSC-derived conditional medium (BMSC-CM). OPC differentiation was studied by immunostaining and morphometric analysis. The expressional changes of Hes1, a transcription factor negatively regulating OPC-differentiation, were studied. The upstream Notch1 and TNFα/RelB pathways were studied, and some key signaling molecules were measured. The correlation between neurotrophin NGF and TNFα was also investigated. Statistical significance was evaluated using one-way ANOVA and performed using SPSS 13.0. Results  The demyelinating damage by HD and remyelination by BMSCs were evidenced by electron microscopy, LFB staining and NG2/MBP immunohistochemistry. In vitro cultured OPCs showed more differentiation after incubation with BMSC-CM. Hes1 expression was found to be significantly increased by HD and decreased by BMSC or BMSC-CM. The change of Hes1 was found, however, independent of Notch1 activation, but dependent on TNFα/RelB signaling. HD was found to increase TNFα, RelB and Hes1 expression, and BMSCs were found to have the opposite effect. Addition of recombinant TNFα to OPCs or RelB overexpression similarly caused upregulation of Hes1 expression. The secretion of NGF by BMSC and activation of NGF receptor was found important for suppression of TNFα production in OPCs. Conclusions  Our findings demonstrated that BMSCs promote remyelination in the spinal cord of HD-exposed rats via TNFα/RelB-Hes1 pathway, providing novel insights for evaluating and further exploring the therapeutical effect of BMSCs on demyelinating neurodegenerative disease.


2020 ◽  
Vol 32 (12) ◽  
pp. 1040
Author(s):  
Małgorzata M. Dobrzyńska ◽  
Aneta Gajowik

Male mice were exposed to lycopene (LYC; 0.15 and 0.30mg kg−1) and irradiation (0.5, 1 Gy) alone or in combination (0.5 Gy+0.15mg kg−1 LYC; 0.5 Gy+0.30mg kg−1 LYC; 1 Gy+0.15mg kg−1 LYC; 1 Gy+0.30mg kg−1 LYC) for 2 weeks. LYC administration in the drinking water was started 24h or on Day 8 after the first irradiation dose or equivalent time point for groups treated with LYC alone. Sperm count, motility, morphology and DNA damage were determined at the end of the 2-week treatment period. Irradiation deteriorated sperm count and quality. Supplementation with LYC from 24h significantly increased the sperm count compared with irradiation alone. In almost all combined treatment groups, the percentage of abnormal spermatozoa was significantly decreased compared with that after irradiation alone. In some cases, combined treatment reduced levels of DNA damage in gametes. Both doses of LYC administered from Day 8 significantly reduced the percentage of morphologically abnormal spermatozoa compared with that seen after 1 Gy irradiation and reduced DNA damage in all combined treatment groups. In conclusion, LYC supplementation after irradiation can ameliorate the harmful effects of irradiation on gametes. Mitigation of radiation-induced damage in germ cells following LYC administration may be useful for radiological accidents and to protect non-treated tissues in patients with cancer undergoing radiotherapy.


2013 ◽  
Vol 25 (1) ◽  
pp. 290 ◽  
Author(s):  
R. H. Powell ◽  
M. N. Biancardi ◽  
J. Galiguis ◽  
Q. Qin ◽  
C. E. Pope ◽  
...  

Spermatogonial stem cells (SSC), progenitor cells capable of both self-renewal and producing daughter cells that will differentiate into sperm, can be manipulated for transplantation to propagate genetically important males. This application was demonstrated in felids by the successful xeno-transplantation of ocelot mixed germ cells into the testes of domestic cats, which resulted in the production of ocelot sperm (Silva et al. 2012 J. Androl. 33, 264–276). Spermatogonial stem cells are in low numbers in the testis, but have been identified and isolated in different mammalian species using SSC surface markers; however, their expression varies among species. Until recently, little was known about the expression of SSC surface markers in feline species. We previously demonstrated that many mixed germ cells collected from adult cat testes express the germ cell markers GFRα1, GPR125, and C-Kit, and a smaller population of cells expresses the pluripotent SSC-specific markers SSEA-1 and SSEA-4 (Powell et al. 2011 Reprod. Fertil. Dev. 24, 221–222). In the present study, our goal was to identify germ cell and SSC-specific markers in SSC from cat testes. Immunohistochemical (IHC) localization of germ cell markers GFRα1, GPR125, and C-Kit and pluripotent SSC-specific markers SSEA-1, SSEA-4, TRA-1-60, TRA-1-81, and Oct-4 was detected in testis tissue from both sexually mature and prepubertal males. Testes were fixed with modified Davidson’s fixative for 24 h before processing, embedding, and sectioning. The EXPOSE Mouse and Rabbit Specific HRP/DAB detection IHC kit (Abcam®, Cambridge, MA, USA) was used for antibody detection. Staining for SSEA-1, SSEA-4, TRA-1-60, TRA-1-81, and Oct-4 markers was expressed specifically at the basement membrane of the seminiferous tubules in both adult and prepubertal testes. The GFRα1 and GPR125 markers were detected at the basement membrane of the seminiferous tubules and across the seminiferous tubule section. However, C-Kit was not detected in any cell. Using flow cytometry from a pool of cells from seven adult testes, we detected 45% GFRα1, 50% GPR125, 59% C-Kit, 18% TRA-1-60, 16% TRA-1-81 positive cells, and a very small portion of SSEA-1 (7%) and SSEA-4 (3%) positive cells. Dual staining of germ cells pooled from 3 testes revealed 3 distinct cell populations that were positive for GFRα1 only (23%), positive for both GFRα1 and SSEA-4 (6%), and positive for SSEA-4 only (1%). Our IHC staining of cat testes indicated that cells along the basement membrane of seminiferous tubules were positive for SSC-specific markers, and flow cytometry analysis revealed that there were different cell populations expressing both germ cell and SSC-specific markers. Flow cytometry results show overlapping germ cell populations expressing SSEA-4 and GFRα1, and IHC results reveal that SSEA-4 positive cells are spermatogonia, whereas GFRα1 positive cells include other stages of germ cells, indicating that the small population of cells positive only for SSEA-4 is undifferentiated cat SSC.


2009 ◽  
Vol 4 (10) ◽  
pp. 1934578X0900401 ◽  
Author(s):  
Kit-Lam Chan ◽  
Bin-Seng Low ◽  
Chin-Hoe Teh ◽  
Prashanta K. Das

The present study investigated the effects of a standardized methanol extract of E. longifolia Jack containing the major quassinoid constituents of 13α(21)-epoxyeurycomanone (1), eurycomanone (2), 13α,21-dihydroeurycomanone (3) and eurycomanol (4) on the epididymal spermatozoa profile of normal and Andrographis paniculata induced infertile rats. The standardized MeOH extract at doses of 50, 100 and 200 mg/kg, the EtOAc fraction (70 mg/kg), and standardized MeOH extract at 200 mg/kg co-administered with the EtOAc fraction of A. paniculata at 70 mg/kg were each given orally to male Sprague-Dawley albino rats for 48 consecutive days. The spermatozoa count, morphology, motility, plasma testosterone level and Leydig cell count of the animals were statistically analyzed by ANOVA with a post-hoc Tukey HSD test. The results showed that the sperm count of rats given the standardized MeOH extract alone at doses of 50, 100 and 200 mg/kg were increased by 78.9, 94.3 and 99.2 %, respectively when compared with that of control (p < 0.01). The low count, poor motility and abnormal morphology of the spermatozoa induced by the A. paniculata fraction were significantly reversed by the standardized MeOH extract of E. longifolia (p < 0.001). The plasma testosterone level of the rats treated with the standardized MeOH extract at 200 mg/kg was significantly increased (p < 0.01) when compared with that of the control and infertile animals. The spermatocytes in the seminiferous tubules and the Leydig cells appeared normal. Testosterone level was significantly higher in the testes (p < 0.01) than in the plasma after 30 days of oral treatment with the standardized MeOH extract. Interestingly, eurycomanone (2) alone was detected in the rat testis homogenates by HPLC-UV and confirmed by LC/MS, and may have contributed towards the improvement of sperm quality. Thus, the plant may potentially be suitable for the management of male infertility.


2012 ◽  
Vol 24 (2) ◽  
pp. 337 ◽  
Author(s):  
Ning Qu ◽  
Munekazu Naito ◽  
Jun Li ◽  
Hayato Terayama ◽  
Shuichi Hirai ◽  
...  

Spermatogonial stem cells (SSCs) are the foundation of spermatogenesis, and are characterised by their ability to self-renew and to produce differentiated progeny that form spermatozoa. It has been demonstrated that rat spermatogenesis can occur in the seminiferous tubules of congenitally immunodeficient recipient mice after transplantation of rat SSCs. However, the testis is often viewed as an immune-privileged site in that autoimmunogenic antigens on germ cells do not normally elicit an immune response in situ. In the present study, we tried to transplant rat SSCs into immunocompetent mice after depletion of their own germ cells by means of busulfan. The results showed that some transplanted SSCs could undergo complete spermatogenesis in recipient mouse testes, the rat spermatozoa being detected in 7 of 28 recipient epididymides. A significant increase in mouse spermatozoa was also noted in all 28 epididymides of recipient mice regardless of whether rat spermatozoa were concurrently present or not. These results suggest that transplanted rat SSCs can be tolerated in the testes of immunocompetent mice and that the transplantation of rat SSCs stimulates endogenous spermatogenesis in the recipient mice.


2018 ◽  
Vol 58 (9) ◽  
pp. 1608
Author(s):  
T. L. B. G. Lins ◽  
V. G. Menezes ◽  
R. S. Barberino ◽  
S. A. P. Costa ◽  
N. M. S. S. Santos ◽  
...  

The aim of the present study was to evaluate the influence of water salinity on semen quality, and on the morphology and apoptosis of germinal epithelial cells in prepubertal Morada Nova male lambs. Thirty-two lambs were allocated into four treatments with different amounts of sodium chloride (NaCl) added to the drinking water to simulate different water salinities; consequently, the concentrations of total dissolved solids (TDS) were as follows: 640 (control), 3188; 5740 and 8326 mg/L TDS. After 78 days, sperm was collected for analysis. The animals were slaughtered and histological and morphometric analyses and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL) assay were performed on the testis tissue. The thickness of the germinal epithelium and diameter of the seminiferous tubules were measured. A quadratic effect (P < 0.05) was observed in regard to semen volume and sperm abnormalities. There was an increase in the sperm count in the treatment containing 3188 mg/L TDS, compared with the control (640 mg/L TDS); however, this treatment did not differ (P > 0.05) from the other salinity treatments. Moreover, treatments with 3188 mg/L or 5740 mg/L TDS showed a higher (P < 0.05) spermatic vigour than did the other treatments. There was an increase (P < 0.05) in the number of TUNEL-positive cells in the treatment with the highest salinity (8326 mg/L TDS) compared with the control and other treatments. In conclusion, water used for drinking should contain between 3188 and 5740 mg/mL TDS so as to improve the concentration, vigour, motility and volume of semen, and to decrease sperm abnormalities in germinal cells of seminiferous tubule of Morada Nova ram lambs.


2020 ◽  
Author(s):  
Amin Tavassoli ◽  
Hesam DEHGHANI

Abstract Background: Promyelocytic leukemia (PML) as the main protein of PML nuclear bodies regulates various physiological processes such as transcription, DNA repair, apoptosis, senescence, and several signaling pathways in different cell types. It is well known that the PML protein is involved in the regulation of stem cell properties by maintaining an open chromatin conformation for the regulatory regions of the Oct4 gene. However, there is no experimental evidence for the presence and function of PML protein in the testis tissue. Results: In this study, we show the presence of PML protein in the developing mouse testis and its co-expression with the OCT4 protein. Immunohistochemical analysis of testis mirror sections shows that PML is co-expressed with the OCT4 protein in the outermost cellular layer of seminiferous tubules, where the spermatogonial stem cells are located. Conclusions: Our findings suggest that the PML protein might be involved in the stemness of spermatogonial stem cells at different stages of its development, even before earning the ability to produce mature sperm.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Zhengpin Wang ◽  
Xiaojiang Xu ◽  
Jian-Liang Li ◽  
Cameron Palmer ◽  
Dragan Maric ◽  
...  

AbstractSpermatogonial stem cells (SSCs) have the dual capacity to self-renew and differentiate into progenitor spermatogonia that develop into mature spermatozoa. Here, we document that preferentially expressed antigen of melanoma family member 12 (PRAMEF12) plays a key role in maintenance of the spermatogenic lineage. In male mice, genetic ablation of Pramef12 arrests spermatogenesis and results in sterility which can be rescued by transgenic expression of Pramef12. Pramef12 deficiency globally decreases expression of spermatogenic-related genes, and single-cell transcriptional analysis of post-natal male germline cells identifies four spermatogonial states. In the absence of Pramef12 expression, there are fewer spermatogonial stem cells which exhibit lower expression of SSC maintenance-related genes and are defective in their ability to differentiate. The disruption of the first wave of spermatogenesis in juvenile mice results in agametic seminiferous tubules. These observations mimic a Sertoli cell-only syndrome in humans and may have translational implications for reproductive medicine.


Sign in / Sign up

Export Citation Format

Share Document