scholarly journals A Roadheader-Assisted Coal Cutter Based on Tensile Failure Mechanism of Coal

Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Bo Liu ◽  
Zhiliu Wang ◽  
Wei Xu ◽  
Zhiwei Yu ◽  
Zhendong Yan ◽  
...  

This paper proposes a new roadheader-assisted coal cutter (RACC) based on the tensile failure mechanism of coal. An innovative mining method, called the cutting inside and spalling outside mining (CISOM) method, is developed based on this new RACC. The mechanical model is established, and the working mechanism of the new CISOM method is illustrated using a column model and a beam model. The mechanical models reveal that the tensile stress causes greater deflection than compressive stress. The deflection and mining width demonstrates a quadratic relationship. To understand the stratum behaviors and improve mining efficiency, the stability of a working face owned by Jincheng Coal Mining Group in Shanxi is analyzed using UDEC numerical simulation. Numerical results indicate that the optimal values of the parameter are 0.8 m width for the inside cutting and 0.4 m width for the outside spalling at #1305 working face. The newly developed RACC was successfully applied at #1305 working face. The field results showed that the recovery rate of CISOM method is over 90%; i.e., it is improved by 20% in comparison with the traditional method.

2019 ◽  
Vol 16 (2) ◽  
pp. 423-438 ◽  
Author(s):  
Peng Zhou ◽  
Yajun Wang ◽  
Guolong Zhu ◽  
Yubing Gao

Abstract Non-pillar coal mining has been developed and implemented in the recent decades in China's coal mining industry. The non-pillar longwall mining by roof cutting without pre-excavated entry (N00 mining method) is one of the latest non-pillar mining methods and this method has the advantages of reduced roadway drivage ratio and increased resource recovery ratio. Previous studies show that the mining pressure during the working face advancing is one of the main factors that affect the stability of underground structures and the safety production. However, there is no evaluation or analysis of the mining pressure at the mining face using entry retaining with roof pre-cutting and an absence of pre-excavated tail entry. In this paper, both field monitoring and numerical simulation approaches are employed in the analysis of the mining pressure distribution characteristics within a range of the whole working face during the face advancing. The results are compared with the field data and simulation results from the traditional mining method performed in the same coal mine. Results supported the idea that the N00 mining method can generate a low-stress area for the retained entry. The stability of the working face and retained entry can be well maintained due to the mine pressure optimization. This paper can aid in the understanding of structural mechanic modeling and mine pressure distribution features, structural mechanic analysis and mine pressure distribution features of the N00 mining method.


2021 ◽  
Vol 11 (20) ◽  
pp. 9640
Author(s):  
Jianlin Xie ◽  
Weibing Zhu ◽  
Jialin Xu ◽  
Xiaozhen Wang ◽  
Limin Wang

Owing to alternate mining of the new and old mining areas on sites, the mining thickness and width of the working face for pier-column backfilling varies. Thus, there is an urgent need to determine the impact on the bearing performance of the backfilled pier-column after changing the mined dimensions. This study consisted of three-dimensional numerical simulations, physical experiments, and field testing. These methods were performed to study the impact on the stability of the backfilled pier-column after changing the dimensions of the working face. The numerical and physical simulation results revealed that the mining thickness has a greater impact on the stability of the backfilled pier-columns than the width. Field testing results proved that the designed parameters for the backfilled pier-column in situ satisfy the bearing requirements; thus, it can effectively support the overlying strata of the goaf after mining. When increasing the mining thickness, the stress borne by the pier-column increased, and its stability decreased. Upon increasing the mining width, the variation in the stress exerted onto the pier-column was remarkably small, and the change of the elastoplastic zone of the pier-column was also minimal.


2012 ◽  
Vol 616-618 ◽  
pp. 406-410
Author(s):  
Gui Liu ◽  
Hua Xing Zhang ◽  
Jin Hui Chen ◽  
Chao Gao

By making full use of the advantages of strip mining method and full-pillar mining method, the wide strip and full-pillar mining method can achieve the aim of mining under villages. However, at the full-pillar mining stage, the difficulty in managing several workfaces which are at work at the same time still exists. To improve the wide strip and full-pillar mining method’s applicability, an optimization of extraction sequence for coal pillars instead of the multi-working-face is put forward at the stage of full-pillar mining, and in the case of the deformation limit of surface structures is satisfied, to extract all the coal pillars which are under villages. By specific analysis of the extraction sequence optimization of the coal pillars in No.1 mine under Qian Xudapo village which belongs to Chang Chun coal Co., LTD., a better result is got which also acts a technological reference for the extraction under villages.


2018 ◽  
Vol 22 (8) ◽  
pp. 2582-2603
Author(s):  
Jiaojiao Xi ◽  
Xiaoyan Liu ◽  
Zhiqiang Yu

The tensile failure mechanism of carbon–aramid hybrid fibers/epoxy sandwich structure laminates was investigated by using experimental and finite element methods. Double curing agents, triarylsulfonium hexafluoroantimonates and triethylene tetramine with a mass ratio of 4:15 were introduced into the laminates. Sandwich structure laminates, with different proportions of hybrid fibers, were cured by UV-initiated anion/cationic dual curing technique. The results showed that the synergetic curing effects of two curing agents were observed under UV irradiation, leading to the better curing of the system, which further plays a positive influence on the mechanical performance. The tensile properties and failure mechanism of the laminates depended on the stacking sequence and fiber volume fractions of the layer structures. The interplay hybrid laminates, containing three alternate plies with fiber contents of 67.7 vol%, presented the optimal tensile performance, and its tensile strength and modulus were 0.82 GPa and 22.09 GPa, respectively. The fracture morphologies revealed that pull-out and debonding of fibers were the main failure mechanism of hybrid laminates. The performance of sandwich structure laminates was determined by the load-carrying capacity of carbon fiber and load-transferring capacity of the aramid fiber and adhesive. The finite element model based on experiments was established to simulate the stress state and failure mechanism of sandwich laminates. The results demonstrated that the stress was better transferred into carbon fibers from the aramid fibers and adhesive, and the relative error rate of maximum stress from finite element analysis and experimental results was less than 5%, which were in reasonable agreement with the experimental results.


2021 ◽  
Vol 5 (1(82)) ◽  
pp. 45-49
Author(s):  
E. Gojayev ◽  
V. Salimova ◽  
Sh. Alieva

The paper presents the results of studying the spectra of thermally stimulated depolarization of high-pressure polyethylene modified with fillers of biocomposites with fillers of biological origin - fish bone and fish scales. It was revealed that the stability and surface density of space charges can be controlled by varying the volumetric content of biological fillers. The optimal values of bio-fillers that contribute to the stability of the surface density of the studied biocomposites have been determined.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Denghong Chen ◽  
Chao Li ◽  
Xinzhu Hua ◽  
Xiaoyu Lu ◽  
Yongqiang Yuan ◽  
...  

Taking the occurrence conditions of the hard main roof in the deep 13-1 coal mining roadway in Huainan mining area as the research object, based on the mechanical parameters of the surrounding rock and the stress state of the main roof obtained by numerical simulation, a simply supported beam calculation model was established based on the damage factor D, main roof support reaction RA, RB, and critical range C (9 m) and B (7 m) at the elastoplastic junction of the solid coal side and mining face side (hereinafter referred to as “junction”). Considering that the damage area still has a large bearing capacity, the vertical stress of the main roof at the junction is K1γH (0.05γh, 0.15γh, and 0.25γh) and K2γH (0.01γh, 0.10γh, and 0.2γh). The maximum deflection is 21 mm, 324 mm, and 627.6 mm, respectively. According to the criterion of tensile failure, the maximum bending moment of the top beam is 209 mN·m at the side of the working face 3.1 m away from the roadway side when K1 = 0.15 and K2 = 0.10, and the whole hard main roof is in tensile failure except the junction. To control the stability of the top beam and simplify the supporting reaction to limit the deformation of the slope angle, RC and RD are used to construct the statically indeterminate beam. By adding an anchor cable and advance self-moving support to the roadway side angle, the problem of difficult control of the surrounding rock with a large deformation of the side angle roof is solved, which provides a reference for roof control under similar conditions.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Eryu Wang ◽  
Xiangdong Chen ◽  
Xiaojie Yang

In order to solve the problems of the high cost and time consumption of half coal rock entry driving, low coal recovery rate, and stress concentration on filling support body of retained entry along gob, the innovative 110 mining method based on pressure relief by roof cutting was adopted in 6302 thin coal seam working face of Baoshan Coal Mine. First the technical principle and key technology of this mining method was presented. Then, through theoretical analysis and calculation, engineering experience, and field test, the key parameters such as the length of constant resistance anchor cable, the cutting angle and height of presplitting blasting, the charge structure, and the blocking-gangue support structure were determined and conducted in the retained entry. The broken expanded coefficient varying law of caved gangue with time and space was obtained, which revealed roof movement characteristic. The displacement monitoring curve of the roof and floor indicated that the maximum subsidence of the roof was about 150 mm and the maximum amount of floor heaving was 100 mm, which were quite small. The field monitoring data indicated that the entry retaining effect is good, which indicated that the innovative 110 mining method can be an effective way for reducing the high cost and time consumption of half coal rock entry driving, enhancing the coal recovery rate and preventing the dynamic mine pressure disasters.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Wenyu Lv ◽  
Kai Guo ◽  
Jianhao Yu ◽  
Xufeng Du ◽  
Kun Feng

The movement of the overlying strata in steeply dipping coal seams is complex, and the deformation of roof rock beam is obvious. In general, the backfill mining method can improve the stability of the surrounding rock effectively. In this study, the 645 working face of the tested mine is used as a prototype to establish the mechanical model of the inclined roof beam using the sloping flexible shield support backfilling method in a steeply dipping coal seam, and the deflection equation is derived to obtain the roof damage structure and the maximum deflection position of the roof beam. Finally, numerical simulation and physical similarity simulation experiments are carried out to study the stability of the surrounding rock structure under backfilling mining in steeply dipping coal seams. The results show the following: (1) With the support of the gangue filling body, the inclined roof beam has smaller roof subsidence, and the maximum deflection position moves to the upper part of working face. (2) With the increase of the stope height, the stress and displacement field of the surrounding rock using the backfilling method show an asymmetrical distribution, the movement, deformation, and failure increase slowly, and the increase of the strain is relatively stable. Compared with the caving method, the range and degree of the surrounding rock disturbed by the mining stress are lower. The results of numerical simulation and physical similarity simulation experiment are generally consistent with the theoretically derived results. Overall, this study can provide theoretical basis for the safe and efficient production of steeply dipping coal seams.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Tao Yang ◽  
Yunkang Rao ◽  
Huailin Chen ◽  
Bing Yang ◽  
Jiangrong Hou ◽  
...  

Understanding the failure mechanism and failure modes of multiface slopes in the Wenchuan earthquake can provide a scientific guideline for the slope seismic design. In this paper, the two-dimensional particle flow code (PFC2D) and shaking table tests are used to study the failure mechanism of multiface slopes. The results show that the failure modes of slopes with different moisture content are different under seismic loads. The failure modes of slopes with the moisture content of 5%, 8%, and 12% are shattering-shallow slip, tension-shear slip, and shattering-collapse slip, respectively. The failure mechanism of slopes with different water content is different. In the initial stage of vibration, the slope with 5% moisture content produces tensile cracks on the upper surface of the slope; local shear slip occurs at the foot of the slope and develops rapidly; however, a tensile failure finally occurs. In the slope with 8% moisture content, local shear cracks first develop and then are connected into the slip plane, leading to the formation of the unstable slope. A fracture network first forms in the slope with 12% moisture content under the shear action; uneven dislocation then occurs in the slope during vibration; the whole instability failure finally occurs. In the case of low moisture content, the tensile crack plays a leading role in the failure of the slope. But the influence of shear failure becomes greater with the increase of the moisture content.


Sign in / Sign up

Export Citation Format

Share Document