scholarly journals Experimental Investigation of the Anchoring Effect of Two Different Types of Rock Bolts on Fractured Rock

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Rongchao Xu ◽  
Hui Zhou

A deep understanding of the anchoring effect of rock bolts on fractured rock is essential for support design in rock engineering. In this paper, cubic specimens containing a single preexisting flaw with different inclination angles were made by high-strength gypsum; uniaxial compression tests were conducted on bolted and unbolted specimens to study the anchoring effect of the fully bonded bolt and the prestressed bolt on fractured rock. The mechanical parameters and failure characteristics of bolted and unbolted specimens were compared and analyzed in detail. The results indicated that both the prestressed and fully bonded bolt had a significant influence on the mechanical behavior of fractured rock. The average value of E, σi, σp, and σr of bolted specimens all increased due to the effect of the rock bolt. The increase degree was the greatest for the specimens with flaw inclination angle of 45°. The increase in residual strength, σr, was the most significant among all the mechanical parameters. The mechanical parameters of specimens anchored with a prestressed bolt increased with an increase in pretension stress. Besides, the reinforcement effect of the two types of rock bolts was different for different mechanical parameters. The bolted specimens displayed different failure characteristics compared to the unbolted specimens. Variation of tension stress in the prestressed bolt during the loading process was divided into three different stages. With an increase in the inclination angle from 30° to 60°, the peak tension stress value first increased and then decreased and obtained the maximum value at inclination angle of 45°. Besides, the peak tension stress value increased with pretension stress.

2021 ◽  
Author(s):  
Tao Zhou ◽  
Haijun Chen ◽  
Liangxiao Xiong ◽  
Zhongyuan Xu ◽  
Jie Yang ◽  
...  

Abstract To study the influence of the inclination and length of Z-shaped fissures on the mechanical properties and failure characteristics of the rock mass, this study conducts a series of uniaxial compression tests on rock-like materials with prefabricated Z-shaped fractures. In addition, two-dimensional Particle Flow Code software is used to perform uniaxial compression numerical simulations. The results show that when the specified inclination angle γ (γ = 0°, 30° or 45°) of the parallel cracks on both sides remains unchanged, the peak strength and elastic modulus of the sample show an M-shaped change trend with an increase in the inclination angle β of the middle connection crack. When γ = 60° or 90°, however, the peak strength and elastic modulus of the sample show a trend of decreasing, increasing, and then decreasing as β increases. In addition, the peak strength and elastic modulus of the sample decrease with an increase in the crack length. The influence of crack length on the elastic modulus is less than that of compressive strength. Further, the main failure mode of specimens with Z-shaped cracks is determined to be tension–shear mixed failure manifested by crack propagation from the tip of the prefabricated crack to the upper and lower boundaries of the sample. As a result, a through failure surface is formed with the prefabricated crack, which destroys the sample.


2020 ◽  
Vol 34 (17) ◽  
pp. 2050150
Author(s):  
Dan Hong ◽  
Wei Zeng ◽  
Fu-Sheng Liu ◽  
Bin Tang ◽  
Qi-Jun Liu

The first-principles calculations are used to investigate the effects on mechanical and electronic properties of Ti-7333 alloy under the tension stress along [001], [100] and [110] directions. First, we study the structure and elastic properties of Ti-7333 alloy with 2, 16, 54 and 128 atoms, finding that the structural parameters of four models are comparative due to the approximate value of c/a and the elastic properties are also similar. Hence, we choose Ti-7333 alloy with 16 atoms to study the effects on mechanical and electronic properties under tension stress along [001], [100] and [110] directions. The changes of independent elastic constants, Debye temperature and anisotropic behavior under different tension stress along all the three directions can reflect that the tensile strength of Ti-7333 alloy may exist between [Formula: see text] and [Formula: see text] GPa and also find that it is easier to change the resistance to deformation of Ti-7333 alloy under the tension stress along [100] direction compared with [001] and [110] directions. What’s more, the calculated mechanical parameters show that the Ti-7333 alloy is brittle and the tendency of variations is small with the increase in tension stress. The effects on electronic properties including metallic and covalent properties are not obvious due to the approximate height of TDOS, pseudogap and charge density.


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1779 ◽  
Author(s):  
Xiaogui Zhou ◽  
Haiming Liu ◽  
Yintong Guo ◽  
Lei Wang ◽  
Zhenkun Hou ◽  
...  

Shale reservoir has an initial unloading effect during the natural uplift and erosion process, which causes the shale brittleness to change, affecting the design of the fracturing scheme. To consider this, the axial compression loading and confining pressure unloading experiment of shale is carried out, and then the influence of unloading rate on the mechanical parameters, failure characteristics, and the brittleness of rock are analyzed. What is more, a new evaluation method of brittleness characteristics that take the unloading effect into consideration is proposed. The conclusions are as follows: (1) The unloading rate has a weakening effect on the mechanical parameters, such as the destructive confining pressure and the residual strength of the samples. (2) The failure characteristics of shale specimens are a single shear failure in an oblique section under low unloading rate, and multiple shear zones accompanied with bedding fracture under high unloading rate. (3) The brittleness of shale samples is well verified by the brittleness index B d 1 and B d 2 during the loading path; nevertheless, it has shortage at the unloading path. This paper proposes a new brittleness evaluation method which can consider the influence of the different unloading rates and unloading points. Furthermore, there is a nice characterization between the brittleness damage and this method.


2011 ◽  
Vol 54 (S1) ◽  
pp. 140-146 ◽  
Author(s):  
WeiZhong Chen ◽  
JianPing Yang ◽  
XianJun Tan ◽  
HongDan Yu

2011 ◽  
Vol 217-218 ◽  
pp. 1637-1640
Author(s):  
Nian Jie Ma ◽  
Guo Dong Zhao ◽  
Chun Lei Ju ◽  
Wei Jiang ◽  
Chong Li

Interaction between coal face hydraulic support and floor is the crucial point for surrounding rock control in coal face and hydraulic support design optimization. Based on the principle of floor specific pressure testing, mechanized coal face hydraulic support parameters are tracked and such mechanical parameters as allowable specific pressure of floor strata are measured, in accordance with which this paper studies on the surrounding rock control in coal face and hydraulic support selection in fully mechanized coal face.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3767
Author(s):  
Kai Wang ◽  
Lianguo Wang ◽  
Bo Ren

This paper introduces a case study on the failure mechanism and support design of a roadway tunnel in the fault fracture zone of the 106 mining area in the Yuandian no.2 coal mine. Based on the on-site geological conditions (in-situ stress test, borehole television imaging, and lithological analysis), the failure mechanism of the roadway tunnel in the fault fracture zone was studied. The test results showed that the high tectonic stress, fractured rock, and poor lithology are the primary reasons for the roadway instability. According to the support principles of grouting reinforcement, pre-reinforced support, and rational support range, a new type of combined support technology was proposed, including advanced grouting, grouting bolts, and grouting anchor cables. A 100 m roadway section was selected for field testing using the new support scheme, and detailed deformation monitoring was performed. Monitoring results showed that the roadway deformation under the new support was significantly reduced. During the roadway excavation process, no roof collapse phenomenon occurred, and the safety of roadway excavation was ensured. This successful case provides an important reference for similar roadway projects in the fault fracture zone.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Zuqiang Xiong ◽  
Changsheng Song ◽  
Chengdong Su ◽  
Xiaolei Wang ◽  
Cheng Wang ◽  
...  

An RMT-150B electrohydraulic servo testing system was used to perform uniaxial compression and uniaxial grading relaxation (creep) tests. The deformation, strength, and failure characteristics of the progressive failure process of coal samples under three loading modes were analyzed. The analysis results show that the prepeak stress-strain curve of the coal samples and the load relationships are not clear and that the whole compression process of coal still showed compression, elastic, yielding, and failure stages. The local stress drop characteristics during our relaxation creep grading tests showed no clear peak value and showed a yield curve with the shape of a conventional single plateau. The values of the mechanical parameters of axial compression were significantly higher than those obtained in the grade relaxation (creep) tests, which showed the mechanical parameters of coal samples with aging characteristics. In the relaxation (creep) tests, when the stress ratio was less than 70%, the relaxation (creep) characteristics of the sample were not clear. When the ratio of stress relaxation (creep) was more than 70% in the relaxation (creep) tests during displacement (stress) with a constant relaxation (creep) over the duration of the test, the evolution, development, and convergence of microcracks in the coal samples were observed. Relaxation (creep) stress was higher, failure duration was shorter, and the duration of failure was longer. For fully mechanized coal faces, increasing the support resistance and timely moving the support after coal cutting may prevent rib spalling accidents by reducing coal stress and exposure time in the front of the working face. Additionally, routine uniaxial compressive failures showed a simple form, having a clear tension-shear dual rupture surface. The staged relaxation creep failure testing of coal is more complex. The entire coal samples were divided into many thin-sheet debris via gradual collapse and shedding, and the number of cracks increased significantly, showing evident lateral expansion characteristics that are similar to the rib spalling characteristics in high coal mining working faces.


Sign in / Sign up

Export Citation Format

Share Document