scholarly journals Soft Tissue/Bone Decomposition of Conventional Chest Radiographs Using Nonparametric Image Priors

2019 ◽  
Vol 2019 ◽  
pp. 1-17
Author(s):  
Yunbi Liu ◽  
Wei Yang ◽  
Guangnan She ◽  
Liming Zhong ◽  
Zhaoqiang Yun ◽  
...  

Background and Objective. When radiologists diagnose lung diseases in chest radiography, they can miss some lung nodules overlapped with ribs or clavicles. Dual-energy subtraction (DES) imaging performs well because it can produce soft tissue images, in which the bone components in chest radiography were almost suppressed but the visibility of nodules and lung vessels was still maintained. However, most routinely available X-ray machines do not possess the DES function. Thus, we presented a data-driven decomposition model to perform virtual DES function for decomposing a single conventional chest radiograph into soft tissue and bone images. Methods. For a given chest radiograph, similar chest radiographs with corresponding DES soft tissue and bone images are selected from the training database as exemplars for decomposition. The corresponding fields between the observed chest radiograph and the exemplars are solved by a hierarchically dense matching algorithm. Then, nonparametric priors of soft tissue and bone components are constructed by sampling image patches from the selected soft tissue and bone images according to the corresponding fields. Finally, these nonparametric priors are integrated into our decomposition model, the energy function of which is efficiently optimized by an iteratively reweighted least-squares scheme (IRLS). Results. The decomposition method is evaluated on a data set of posterior-anterior DES radiography (503 cases), as well as on the JSRT data set. The proposed method can produce soft tissue and bone images similar to those produced by the actual DES system. Conclusions. The proposed method can markedly reduce the visibility of bony structures in chest radiographs and shows potential to enhance diagnosis.

1997 ◽  
Vol 8 (2) ◽  
pp. 95-98
Author(s):  
Thomas J Marrie

OBJECTIVE: To determine how physicians use chest radiography in the diagnosis of pneumonia in ambulatory patients.STUDY POPULATION: A convenience sample of 176 Nova Scotia family physicians and internists selected to represent all geographic areas of the province proportional to population.STUDY INSTRUMENT: A 35-item questionnaire covering demographics, experience with out-patients with pneumonia, use of chest radiographs to make this diagnosis and factors that were considered important in the decision to perform initial and follow-up chest radiographs. Two skill-testing questions were also included.RESULTS: One hundred and fourteen of 176 (64.7%) responded; 88% had treated out-patients with pneumonia in the previous three months. Fifty-seven per cent of physicians requested chest radiographs on 90% to 100% of out-patients in whom they had made a clinical diagnosis of pneumonia. These physicians were more likely to be internists and to have graduated before 1970. Factors that ranked most important in the decision to request the initial chest radiograph were clinical appearance, respiratory distress and physical findings, while age and smoking history contributed most to the decision to perform a follow-up chest radiograph.CONCLUSIONS: There is considerable variability among physicians in requesting chest radiographs on out-patients with a clinical diagnosis of pneumonia. Physician and patient factors contribute to this variability.


Author(s):  
Sheng Chen ◽  
Kenji Suzuki

Most lung nodules missed by radiologists as well as Computer-Aided Diagnostic (CADe) schemes overlap ribs or clavicles in Chest Radiographs (CXRs). This chapter introduces an image-processing technique for suppressing the contrast of ribs and clavicles in CXRs by means of anatomically specific Multiple Massive-Training Artificial Neural Networks (MTANNs). For bone suppression, an MTANN is trained by use of input CXRs and the corresponding “teaching” images. The authors employed bone images obtained by the use of a dual-energy subtraction technique as the teaching images. For the effective suppression of ribs, having various spatial frequencies, the authors developed a multi-resolution MTANN consisting of multi-resolution decomposition/composition techniques and three MTANNs for three different-resolution images. After training with input CXRs and the corresponding dual-energy bone images, the multi-resolution MTANN was able to provide “bone-image-like” images which were similar to the teaching bone images. By subtracting the “bone-image-like” images from the corresponding CXRs, the authors were able to produce “soft-tissue-image-like” images in which ribs and clavicles were substantially suppressed. A single set of multi-resolution MTANNs cannot suppress all bone structures in a CXR, because the orientation, width, contrast, and density of bones differ from location to location, and the capability of a single set of multi-resolution MTANNs is limited. To address this issue, the authors developed anatomically specific multiple MTANNs which consist of eight sets of multi-resolution MTANNs that were designed to process different segments in the lung fields in a CXR. Each set of anatomically specific MTANNs was trained with only the samples in the corresponding segment in the CXR. In order to make the contrast and density between the segments consistent, the authors applied a histogram matching technique to input images. To improve the performance of their CADe scheme, the authors incorporated their MTANN bone suppression into their CADe scheme for nodules in CXRs. In their CADe scheme, 64 morphologic and gray-level-based features were extracted from each nodule candidate in both the original and the “soft-tissue-image-like images,” and a nonlinear support vector classifier was employed for the classification of the candidates. The authors used a validation test database consisting of 118 CXRs with pulmonary nodules and a publicly available database containing 126 nodules. When their technique was applied to non-training CXRs, bones in the CXRs were suppressed substantially, while the visibility of nodules and lung vessels was maintained. With the use of “soft-tissue-image-like images,” the performance of the authors’ CADe scheme was improved from a sensitivity of 76% to 84% with 5 false positives per image. Thus, the authors’ image-processing technique for bone suppression by means of anatomically specific multiple MTANNs is useful for radiologists as well as for CAD schemes in the detection of lung nodules on CXRs.


Respiration ◽  
2021 ◽  
pp. 1-5
Author(s):  
Alexandra M. Buckley ◽  
Stephanie Griffith-Richards ◽  
Razaan Davids ◽  
Elvis M. Irusen ◽  
Peter S. Nyasulu ◽  
...  

The radiological findings of COVID-19 are well-described, including its evolution. In an earlier report of admission chest radiographs of patients with COVID-19, we anecdotally noted relative sparing of the left upper zone (LUZ). We subsequently aimed to describe the main chest radiograph findings in another cohort, focusing on zonal predominance. The admission chest radiographs of 111 patients with CO­VID-19 pneumonia requiring intensive care admission were reviewed by 2 thoracic radiologists and categorized according to the predominant pattern into either ground-glass opacities (GGOs), alveolar infiltrates and/or consolidation, or reticular and/or nodular infiltrates or an equal combination of both, and the extent of disease involvement of each of the zones using a modified Radiologic Assessment of Lung Edema (RALE) score. Parenchymal changes were detected in all. In total, 106 radiographs showed GGOs, alveolar infiltrates, and/or consolidation, and 5 had a combination of reticular/nodular infiltrates as well as GGOs, alveolar infiltrates, and/or consolidation. The LUZ had a significant lower grading score than the right upper zone: 1 versus 2 (<i>p</i> &#x3c; 0.001). Likewise, the upper zones had a significant lower score than the mid and lower zones (<i>p</i> &#x3c; 0.001). Our findings confirmed the relative sparing of the LUZ in severe COVID-19 pneumonia.


Author(s):  
Sebastian Halm ◽  
David Haberthür ◽  
Elisabeth Eppler ◽  
Valentin Djonov ◽  
Andreas Arnold

Abstract Introduction This pilot study explores whether a human Thiel-embalmed temporal bone is suitable for generating an accurate and complete data set with micro-computed tomography (micro-CT) and whether solid iodine-staining improves visualization and facilitates segmentation of middle ear structures. Methods A temporal bone was used to verify the accuracy of the imaging by first digitally measuring the stapes on the tomography images and then physically under the microscope after removal from the temporal bone. All measurements were compared with literature values. The contralateral temporal bone was used to evaluate segmentation and three-dimensional (3D) modeling after iodine staining and micro-CT scanning. Results The digital and physical stapes measurements differed by 0.01–0.17 mm or 1–19%, respectively, but correlated well with the literature values. Soft tissue structures were visible in the unstained scan. However, iodine staining increased the contrast-to-noise ratio by a factor of 3.7 on average. The 3D model depicts all ossicles and soft tissue structures in detail, including the chorda tympani, which was not visible in the unstained scan. Conclusions Micro-CT imaging of a Thiel-embalmed temporal bone accurately represented the entire anatomy. Iodine staining considerably increased the contrast of soft tissues, simplified segmentation and enabled detailed 3D modeling of the middle ear.


2013 ◽  
Vol 19 (3) ◽  
pp. 269-278 ◽  
Author(s):  
Christopher P. Ames ◽  
Justin S. Smith ◽  
Justin K. Scheer ◽  
Christopher I. Shaffrey ◽  
Virginie Lafage ◽  
...  

Object Cervical spine osteotomies are powerful techniques to correct rigid cervical spine deformity. Many variations exist, however, and there is no current standardized system with which to describe and classify cervical osteotomies. This complicates the ability to compare outcomes across procedures and studies. The authors' objective was to establish a universal nomenclature for cervical spine osteotomies to provide a common language among spine surgeons. Methods A proposed nomenclature with 7 anatomical grades of increasing extent of bone/soft tissue resection and destabilization was designed. The highest grade of resection is termed the major osteotomy, and an approach modifier is used to denote the surgical approach(es), including anterior (A), posterior (P), anterior-posterior (AP), posterior-anterior (PA), anterior-posterior-anterior (APA), and posterior-anterior-posterior (PAP). For cases in which multiple grades of osteotomies were performed, the highest grade is termed the major osteotomy, and lower-grade osteotomies are termed minor osteotomies. The nomenclature was evaluated by 11 reviewers through 25 different radiographic clinical cases. The review was performed twice, separated by a minimum 1-week interval. Reliability was assessed using Fleiss kappa coefficients. Results The average intrarater reliability was classified as “almost perfect agreement” for the major osteotomy (0.89 [range 0.60–1.00]) and approach modifier (0.99 [0.95–1.00]); it was classified as “moderate agreement” for the minor osteotomy (0.73 [range 0.41–1.00]). The average interrater reliability for the 2 readings was the following: major osteotomy, 0.87 (“almost perfect agreement”); approach modifier, 0.99 (“almost perfect agreement”); and minor osteotomy, 0.55 (“moderate agreement”). Analysis of only major osteotomy plus approach modifier yielded a classification that was “almost perfect” with an average intrarater reliability of 0.90 (0.63–1.00) and an interrater reliability of 0.88 and 0.86 for the two reviews. Conclusions The proposed cervical spine osteotomy nomenclature provides the surgeon with a simple, standard description of the various cervical osteotomies. The reliability analysis demonstrated that this system is consistent and directly applicable. Future work will evaluate the relationship between this system and health-related quality of life metrics.


Author(s):  
Eric D. McCollum ◽  
Melissa M. Higdon ◽  
Nicholas S. S. Fancourt ◽  
Jack Sternal ◽  
William Checkley ◽  
...  

Abstract Background Chest radiography is the standard for diagnosing pediatric lower respiratory infections in low-income and middle-income countries. A method for interpreting pediatric chest radiographs for research endpoints was recently updated by the World Health Organization (WHO) Chest Radiography in Epidemiological Studies project. Research in India required training local physicians to interpret chest radiographs following the WHO method. Objective To describe the methodology for training Indian physicians and evaluate the training’s effectiveness. Materials and methods Twenty-nine physicians (15 radiologists and 14 pediatricians) from India were trained by two WHO Chest Radiography in Epidemiological Studies members over 3 days in May 2019. Training materials were adapted from WHO Chest Radiography in Epidemiological Studies resources. Participants followed WHO methodology to interpret 60 unique chest radiographs before and after the training. Participants needed to correctly classify ≥80% of radiographs for primary endpoint pneumonia on the post-training test to be certified to interpret research images. We analyzed participant performance on both examinations. Results Twenty-six of 29 participants (89.7%) completed both examinations. The average score increased by 9.6% (95% confidence interval [CI] 5.0–14.1%) between examinations (P<0.001). Participants correctly classifying ≥80% of images for primary endpoint pneumonia increased from 69.2% (18/26) on the pretraining to 92.3% (24/26) on the post-training examination (P=0.003). The mean scores of radiologists and pediatricians on the post-training examination were not statistically different (P=0.43). Conclusion Our results demonstrate this training approach using revised WHO definitions and tools was successful, and that non-radiologists can learn to apply these methods as effectively as radiologists. Such capacity strengthening is important for enabling research to support national policy decision-making in these settings. We recommend future research incorporating WHO chest radiograph methodology to consider modelling trainings after this approach.


2021 ◽  
Vol 14 (7) ◽  
pp. e241644
Author(s):  
Paul Jenkins ◽  
Prageeth Dissanayake ◽  
Richard Riordan

Abnormal communications between the systemic and pulmonary venous systems are rare but can present as a opacity on chest radiograph. A solitary vessel communicating as a fistula directly between the systemic arterial circulation and the pulmonary venous system is not widely described. These may have significant implications in the long-term cardiovascular health of an individual acting as a left to right shunt. There is no clear consensus as to the management, but surgical management and endovascular embolisation have been successfully used. We present a case where a systemic arteriaopulmonary fistula originating from the abdominal aorta and connecting to the right inferior pulmonary vein manifested as an incidental finding on a chest radiograph and was further evaluated on cross-sectional imaging in a young patient. Chest radiographs are non-specific and it is important to be aware of the less frequent but important pathologies that can be picked up on plain chest radiographs, which inturn should warrant further investigation. This is presented in conjunction with a review of the available literature along with a discussion regarding the differential diagnosis and management applicable to the general clinician.


CJEM ◽  
2010 ◽  
Vol 12 (02) ◽  
pp. 128-134 ◽  
Author(s):  
Erik P. Hess ◽  
Jeffrey J. Perry ◽  
Pam Ladouceur ◽  
George A. Wells ◽  
Ian G. Stiell

ABSTRACTObjective:We derived a clinical decision rule to determine which emergency department (ED) patients with chest pain and possible acute coronary syndrome (ACS) require chest radiography.Methods:We prospectively enrolled patients over 24 years of age with a primary complaint of chest pain and possible ACS over a 6-month period. Emergency physicians completed standardized clinical assessments and ordered chest radiographs as appropriate. Two blinded investigators independently classified chest radiographs as “normal,” “abnormal not requiring intervention” and “abnormal requiring intervention,” based on review of the radiology report and the medical record. The primary outcome was abnormality of chest radiographs requiring acute intervention. Analyses included interrater reliability assessment (with κ statistics), univariate analyses and recursive partitioning.Results:We enrolled 529 patients during the study period between Jul. 1, 2007, and Dec. 31, 2007. Patients had a mean age of 59.9 years, 60.3% were male, 4.0% had a history of congestive heart failure and 21.9% had a history of acute myocardial infarction. Only 2.1% (95% confidence interval [CI] 1.1%–3.8%) of patients had radiographic abnormality of the chest requiring acute intervention. The κ statistic for chest radiograph classification was 0.81 (95% CI 0.66–0.95). We derived the following rule: patients can forgo chest radiography if they have no history of congestive heart failure, no history of smoking and no abnormalities on lung auscultation. The rule was 100% sensitive (95% CI 32.0%–10.4%) and 36.1% specific (95% CI 32.0%–40.4%).Conclusion:This rule has potential to reduce health care costs and enhance ED patient flow. It requires validation in an independent patient population before introduction into clinical practice.


2018 ◽  
Vol 36 (3) ◽  
pp. 185-190 ◽  
Author(s):  
Ceri Battle ◽  
Simon Hayward ◽  
Sabine Eggert ◽  
Phillip Adrian Evans

IntroductionIt is well-recognised that the detection of rib fractures is unreliable using chest radiograph. The aim of this systematic review was to investigate whether the use of lung ultrasound is superior in accuracy to chest radiography, in the diagnosis of rib fractures following blunt chest wall trauma.MethodsThe search filter was used for international online electronic databases including MEDLINE, EMBASE, Cochrane and ScienceDirect, with no imposed time or language limitations. Grey literature was searched. Two review authors completed study selection, data extraction and data synthesis/analysis process. Quality assessment using the Quality Assessment of Diagnostic Accuracy Studies Tool (QUADAS-2) was completed.Results13 studies were included. Overall, study results demonstrated that the use of lung ultrasound in the diagnosis of rib fractures in blunt chest wall trauma patients appears superior compared with chest radiograph. All studies were small, single centre and considered to be at risk of bias on quality assessment. Meta-analysis was not possible due to high levels of heterogeneity, lack of appropriate reference standard and poor study quality.DiscussionThe results demonstrate that lung ultrasound may be superior to chest radiography, but the low quality of the studies means that no definitive statement can be made.


Sign in / Sign up

Export Citation Format

Share Document