scholarly journals Improved Rainfall Prediction through Nonlinear Autoregressive Network with Exogenous Variables: A Case Study in Andes High Mountain Region

2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Mario Peña ◽  
Angel Vázquez-Patiño ◽  
Darío Zhiña ◽  
Martin Montenegro ◽  
Alex Avilés

Precipitation is the most relevant element in the hydrological cycle and vital for the biosphere. However, when extreme precipitation events occur, the consequences could be devastating for humans (droughts or floods). An accurate prediction of precipitation helps decision-makers to develop adequate mitigation plans. In this study, linear and nonlinear models with lagged predictors and the implementation of a nonlinear autoregressive model with exogenous variables (NARX) network were used to predict monthly rainfall in Labrado and Chirimachay meteorological stations. To define a suitable model, ridge regression, lasso, random forest (RF), support vector machine (SVM), and NARX network were used. Although the results were “unsatisfactory” with the linear models, the specific direct influences of variables such as Niño 1 + 2, Sahel rainfall, hurricane activity, North Pacific Oscillation, and the same delayed rainfall signal were identified. RF and SVM also demonstrated poor performance. However, RF had a better fit than linear models, and SVM has a better fit than RF models. Instead, the NARX model was trained using several architectures to identify an optimal one for the best prediction twelve months ahead. As an overall evaluation, the NARX model showed “good” results for Labrado and “satisfactory” results for Chirimachay. The predictions yielded by NARX models, for the first six months ahead, were entirely accurate. This study highlighted the strengths of NARX networks in the prediction of chaotic and nonlinear signals such as rainfall in regions that obey complex processes. The results would serve to make short-term plans and give support to decision-makers in the management of water resources.

2021 ◽  
Vol 287 ◽  
pp. 04001
Author(s):  
Rosminah Mustakim ◽  
Mazlina Mamat

This paper compares the performance of Nonlinear Autoregressive Exogenous (NARX) Neural Network and Support Vector Machine (SVM) regression model to predict the Air Pollutant Index (API) in Malaysia. Two models namely the NARX and SVM regression were developed using the API and air quality time series data from three monitoring stations: Pasir Gudang, TTDI Jaya and Larkin. Hourly data of API and air quality parameters collected in year 2016 and 2018 were utilized to produce one step ahead API prediction. The air quality parameters consist of the NO2, SO2, CO, O3, PM2.5, PM10 concentration as well as three meteorological parameters which are wind speed, wind direction and ambient temperature. The NARX model was realized using a series-parallel feed-forward network. For the SVM regression model, different kernel functions: Linear, Quadratic, Cubic, Fine Gaussian, Medium Gaussian and Coarse Gaussian were evaluated. The performance of NARX and SVM regression was measured using the Root Mean Square Error (RMSE) and Coefficient of Determination (R2) values. Results show that the NARX model outperformed the SVM regression model in both 2016 and 2018 data respectively.


2009 ◽  
Vol 18 (06) ◽  
pp. 929-947 ◽  
Author(s):  
LI ZHANG ◽  
YU-GENG XI ◽  
WEI-DA ZHOU

Support vector machine (SVM) is a universal learning method. In this paper, an affine support vector machine (ASVM) for regression is presented for identification and control of input-affine nonlinear models. ASVM is a variant of SVM and so inherits its merits. The solution to ASVM is cast into a convex quadratic programming (QP). Hence ASVM has a unique global solution. In addition, the curse of dimensionality is avoided because ASVM is insensitive to the dimensionality of data. A commonly used model for a nonlinear system is a nonlinear autoregressive exogenous (NARX) model. ASVM could get good performance in both identification and control if a NARX model can be well represented by an input-affine nonlinear model. The experimental results validate the efficiency of ASVM in identification and control of discrete-time nonlinear systems.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Helder Sebastião ◽  
Pedro Godinho

AbstractThis study examines the predictability of three major cryptocurrencies—bitcoin, ethereum, and litecoin—and the profitability of trading strategies devised upon machine learning techniques (e.g., linear models, random forests, and support vector machines). The models are validated in a period characterized by unprecedented turmoil and tested in a period of bear markets, allowing the assessment of whether the predictions are good even when the market direction changes between the validation and test periods. The classification and regression methods use attributes from trading and network activity for the period from August 15, 2015 to March 03, 2019, with the test sample beginning on April 13, 2018. For the test period, five out of 18 individual models have success rates of less than 50%. The trading strategies are built on model assembling. The ensemble assuming that five models produce identical signals (Ensemble 5) achieves the best performance for ethereum and litecoin, with annualized Sharpe ratios of 80.17% and 91.35% and annualized returns (after proportional round-trip trading costs of 0.5%) of 9.62% and 5.73%, respectively. These positive results support the claim that machine learning provides robust techniques for exploring the predictability of cryptocurrencies and for devising profitable trading strategies in these markets, even under adverse market conditions.


2014 ◽  
Vol 28 (2) ◽  
pp. 3-28 ◽  
Author(s):  
Hal R. Varian

Computers are now involved in many economic transactions and can capture data associated with these transactions, which can then be manipulated and analyzed. Conventional statistical and econometric techniques such as regression often work well, but there are issues unique to big datasets that may require different tools. First, the sheer size of the data involved may require more powerful data manipulation tools. Second, we may have more potential predictors than appropriate for estimation, so we need to do some kind of variable selection. Third, large datasets may allow for more flexible relationships than simple linear models. Machine learning techniques such as decision trees, support vector machines, neural nets, deep learning, and so on may allow for more effective ways to model complex relationships. In this essay, I will describe a few of these tools for manipulating and analyzing big data. I believe that these methods have a lot to offer and should be more widely known and used by economists.


Author(s):  
Kamal Pandey ◽  
Bhaskar Basu ◽  
Sandipan Karmakar

“Smart cities” start with “Smart Buildings” that improve the quality of urban services while ensuring sustainability. The current scenario in India reveals that the corporate and residential building structures are incorporating various self-sustainable techniques. Out of the multiple factors governing the comfort of smart buildings, indoor room temperature is an important one, since it drives the need of cooling or heating through controlling systems. Around one-third of total energy consumption of commercial buildings in India is attributed to Heating, Ventilation and Air Conditioning (HVAC) systems. Accurate prediction of indoor room temperature helps in creating an efficient equilibrium between energy consumption and comfort level of the building, thus providing opportunities for efficient decision making for energy optimization. Considering Indian climatic and geographical conditions, this paper proposes an efficient decision making approach using Bayesian Dynamic Models (BDM) for short-term indoor room temperature forecasting of a corporate building structure. The results obtained from Bayesian Dynamic linear model, using Expectation Maximization (EM) algorithm, have been compared to standard Auto Regressive Integrated Moving Average (ARIMA) model, and have been found to be more accurate. Forecasting of indoor room temperature is a highly nonlinear phenomenon, so to further improve the accuracy of the linear models, a hybrid modeling approach has been proposed. The inclusion of state-of-the-art nonlinear models such as Artificial Neural Networks (ANNs) and Support Vector Regression (SVR) improves the forecasting accuracy of the linear models significantly. Results show that the hybrid model obtained using BDM and ANN is the best fit model.


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1618 ◽  
Author(s):  
Dan Ma ◽  
Hongyu Duan ◽  
Xin Cai ◽  
Zhenhua Li ◽  
Qiang Li ◽  
...  

Water inrush hazards can be effectively reduced by a reasonable and accurate soft-measuring method on the water inrush quantity from the mine floor. This is quite important for safe mining. However, there is a highly nonlinear relationship between the water outburst from coal seam floors and geological structure, hydrogeology, aquifer, water pressure, water-resisting strata, mining damage, fault and other factors. Therefore, it is difficult to establish a suitable model by traditional methods to forecast the water inrush quantity from the mine floor. Modeling methods developed in other fields can provide adequate models for rock behavior on water inrush. In this study, a new forecast system, which is based on a hybrid genetic algorithm (GA) with the support vector machine (SVM) algorithm, a model structure and the related parameters are proposed simultaneously on water inrush prediction. With the advantages of powerful global optimization functions, implicit parallelism and high stability of the GA, the penalty coefficient, insensitivity coefficient and kernel function parameter of the SVM model are determined as approximately optimal automatically in the spatial dimension. All of these characteristics greatly improve the accuracy and usable range of the SVM model. Testing results show that GA has a useful ability in finding optimal parameters of a SVM model. The performance of the GA optimized SVM (GA-SVM) is superior to the SVM model. The GA-SVM enables the prediction of water inrush and provides a promising solution to the predictive problem for relevant industries.


2018 ◽  
Vol 7 (3.15) ◽  
pp. 36 ◽  
Author(s):  
Sarah Nadirah Mohd Johari ◽  
Fairuz Husna Muhamad Farid ◽  
Nur Afifah Enara Binti Nasrudin ◽  
Nur Sarah Liyana Bistamam ◽  
Nur Syamira Syamimi Muhammad Shuhaili

Predicting financial market changes is an important issue in time series analysis, receiving an increasing attention due to financial crisis. Autoregressive integrated moving average (ARIMA) model has been one of the most widely used linear models in time series forecasting but ARIMA model cannot capture nonlinear patterns easily. Generalized autoregressive conditional heteroscedasticity (GARCH) model applied understanding of volatility depending to the estimation of previous forecast error and current volatility, improving ARIMA model. Support vector machine (SVM) and artificial neural network (ANN) have been successfully applied in solving nonlinear regression estimation problems. This study proposes hybrid methodology that exploits unique strength of GARCH + SVM model, and GARCH + ANN model in forecasting stock index. Real data sets of stock prices FTSE Bursa Malaysia KLCI were used to examine the forecasting accuracy of the proposed model. The results shows that the proposed hybrid model achieves best forecasting compared to other model.  


Autoregressive (AR) random fields are widely use to describe changes in the status of real-physical objects and implemented for analyzing linear & non-linear models. AR models are Markov processes with a higher order dependence for one-dimensional time series. Actually, various estimation methods were used in order to evaluate the autoregression parameters. Although in many applications background knowledge can often shed light on the search for a suitable model, but other applications lack this knowledge and often require the type of trial errors to choose a model. This article presents a brief survey of the literatures related to the linear and non-linear autoregression models, including several extensions of the main mode models and the models developed. The use of autoregression to describe such system requires that they be of sufficiently high orders which leads to increase the computational costs.


Author(s):  
J. Behmann ◽  
P. Schmitter ◽  
J. Steinrücken ◽  
L. Plümer

Detection of crop stress from hyperspectral images is of high importance for breeding and precision crop protection. However, the continuous monitoring of stress in phenotyping facilities by hyperspectral imagers produces huge amounts of uninterpreted data. In order to derive a stress description from the images, interpreting algorithms with high prediction performance are required. Based on a static model, the local stress state of each pixel has to be predicted. Due to the low computational complexity, linear models are preferable. <br><br> In this paper, we focus on drought-induced stress which is represented by discrete stages of ordinal order. We present and compare five methods which are able to derive stress levels from hyperspectral images: One-vs.-one Support Vector Machine (SVM), one-vs.-all SVM, Support Vector Regression (SVR), Support Vector Ordinal Regression (SVORIM) and Linear Ordinal SVM classification. The methods are applied on two data sets - a real world set of drought stress in single barley plants and a simulated data set. It is shown, that Linear Ordinal SVM is a powerful tool for applications which require high prediction performance under limited resources. It is significantly more efficient than the one-vs.-one SVM and even more efficient than the less accurate one-vs.-all SVM. Compared to the very compact SVORIM model, it represents the senescence process much more accurate.


Sign in / Sign up

Export Citation Format

Share Document