scholarly journals Gelsolin Promotes Cancer Progression by Regulating Epithelial-Mesenchymal Transition in Hepatocellular Carcinoma and Correlates with a Poor Prognosis

2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Yixi Zhang ◽  
Xiaojing Luo ◽  
Jianwei Lin ◽  
Shunjun Fu ◽  
Pei Feng ◽  
...  

Gelsolin (GSN), a cytoskeletal protein, is frequently overexpressed in different cancers and promotes cell motility. The biological function of GSN in hepatocellular carcinoma (HCC) and its mechanism remain unclear. The expression of GSN was assessed in a cohort of 188 HCC patients. The effects of GSN on the migration and invasion of tumour cells were examined. Then, the role of GSN in tumour growth in vivo was determined by using a cancer metastasis assay. The possible mechanism by which GSN promotes HCC progression was explored. As a result, GSN was overexpressed in HCC tissues. High GSN expression was significantly correlated with late Edmondson grade, encapsulation, and multiple tumours. Patients with high GSN expression had worse overall survival (OS) and disease-free survival (DFS) than those with low GSN expression. GSN expression was identified as an independent risk factor in both OS (hazard risk (HR) = 1.620, 95% confidence interval (CI) = 1.105–2.373, P<0.001) and DFS (HR = 1.744, 95% CI = 1.205–2.523, P=0.003). Moreover, GSN knockdown significantly inhibited the migration and invasion of HCC tumour cells, while GSN overexpression attenuated these effects by regulating epithelial-mesenchymal transition (EMT) In conclusion, GSN promotes cancer progression and is associated with a poor prognosis in HCC patients. GSN promotes HCC progression by regulating EMT.

2018 ◽  
Vol 243 (7) ◽  
pp. 645-654 ◽  
Author(s):  
Yi-Quan Yan ◽  
Juan Xie ◽  
Jing-Fu Wang ◽  
Zhao-Feng Shi ◽  
Xiang Zhang ◽  
...  

Hepatocellular carcinoma (HCC) is one of the most malignant diseases worldwide. The unfavorable clinical outcome and poor prognosis are due to high rates of recurrence and metastasis after treatments. Some scholars of traditional Chinese medicine suggested that endogenous wind-evil had played an important role in metastasis of malignant tumor. Therefore, the drug of dispelling wind-evil could be used to prevent cancer metastasis and improve the poor prognosis. So we wondered whether Scorpion, one of the most important wind calming drugs, has antitumor effect especially in epithelial–mesenchymal transition (EMT) and metastasis of HCC in this research. We found that Scorpion-medicated serum could inhibit proliferation, induce apoptosis, and decrease migration and invasion capacity of Hepa1-6 cells in vitro. Meanwhile, we observed that water decoction of Scorpion restrained tumor growth and metastasis in nude mouse of HCC metastasis models. Further experiments showed that Scorpion could suppress EMT, which is characterized by increased epithelial marker E-cadherin expression and decreased mesenchymal markers N-cadherin and Snail expression following Scorpion treatment both in vitro and in vivo. These results suggested that the Scorpion could inhibit Hepa1-6 cells’ invasion and metastasis in part by reversing EMT and providing a possible potential approach for preventing HCC metastasis. Impact statement The unfavorable clinical outcome and poor prognosis of hepatocellular carcinoma (HCC) are due to high rates of recurrence and metastasis after treatments. Here we found Scorpion, one of the most important wind calming drugs, has antitumor effect. Scorpion-medicated serum inhibited the proliferation, induced apoptosis, and decreased migration and invasion capacity of Hepa1-6 cells in vitro. Water decoction of Scorpion restrained tumor growth and metastasis in nude mouse of HCC metastasis models. Further experiments showed that Scorpion could suppress EMT of HCC both in vitro and in vivo. Our results suggested that the Scorpion could inhibit Hepa1-6 cells’ invasion and metastasis in part by reversing EMT and providing a possible potential approach for preventing HCC metastasis.


2019 ◽  
Vol 133 (14) ◽  
pp. 1645-1662 ◽  
Author(s):  
Yan-rong Zhao ◽  
Ji-long Wang ◽  
Cong Xu ◽  
Yi-ming Li ◽  
Bo Sun ◽  
...  

Abstract Heart development protein with EGF-like domains 1 (HEG1) plays critical roles in embryo development and angiogenesis, which are closely related to tumor progression. However, the role of HEG1 in hepatocellular carcinoma (HCC) remains unknown. In the present study, we explored the clinical significance, biological function and regulatory mechanisms of HEG1 in HCC and found that HEG1 is significantly up-regulated in HCC cell lines and primary tumor samples. Additionally, high HEG1 expression is correlated with aggressive clinicopathological features. Patients with high HEG1 expression had shorter overall survival (OS) and disease-free survival (DFS) than those with low HEG1 expression, which indicated that HEG1 is an independent factor for poor prognosis. Lentivirus-mediated HEG1 overexpression significantly promotes HCC cell migration, invasion and epithelial–mesenchymal transition (EMT) in vitro and promotes intrahepatic metastasis, lung metastasis and EMT in vivo. Opposing results are observed when HEG1 is silenced. Mechanistically, HEG1 promotes β-catenin expression and maintains its stability, leading to intracellular β-catenin accumulation, β-catenin nuclear translocation and Wnt signaling activation. Loss- and gain-of-function assays further confirmed that β-catenin is essential for HEG1-mediated promotion of HCC invasion, metastasis and EMT. In conclusion, HEG1 indicates poor prognosis; plays important roles in HCC invasion, metastasis and EMT by activating Wnt/β-catenin signaling; and can serve as a potentially valuable prognostic biomarker and therapeutic target for HCC.


2019 ◽  
Vol 41 (5) ◽  
pp. 571-581
Author(s):  
Tao Huang ◽  
Yi-Zhan Guo ◽  
Xiao Yue ◽  
Guo-Pei Zhang ◽  
Yi Zhang ◽  
...  

Abstract Cripto-1 (CR1), an oncofetal protein, had been implied to reactivate in some cancers. However, the relationship between CR1 expression and patient outcomes and the tumor biological function of CR1 contributing to invasion and metastasis in hepatocellular carcinoma (HCC) is poorly defined. In this study, we demonstrated that CR1 was expressed in over 80% of HCCs in a training cohort (n = 242) and a validation cohort (n = 159). High CR1 expression was significantly correlated with aggressive HCC phenotypes (i.e. portal vein tumor thrombus, microscopic vascular invasion, multiple tumors and poor tumor differentiation). In both the training and validation cohorts, patients with high CR1 expression had remarkably shorter disease-free survival and overall survival rates than those with low CR1 expression. A series in vitro and in vivo assays showed that CR1 substantially promoted HCC cell migration, invasion and metastasis. Mechanistically, we demonstrated that CR1 induced HCC cells to undergo epithelial–mesenchymal transition through activating the Akt/NFκB/p65 signaling. Chromatin immunoprecipitation assay showed that NFκB/p65 enhanced CR1 expression by binding its promoter. Thus, CR1 and NFκB/p65 form a positive feedback loop that sustained the process of migration and invasion of HCC. Therefore, CR1 plays an important role in HCC invasion and metastasis and may be an effective and reliable prognostic biomarker for HCC recurrence after resection. Targeting CR1 may be a promising treatment for HCC.


2017 ◽  
Vol 42 (3) ◽  
pp. 1025-1036 ◽  
Author(s):  
Dehu Chen ◽  
Guiyuan Liu ◽  
Ning Xu ◽  
Xiaolan You ◽  
Haihua Zhou ◽  
...  

Background/Aims: Gastric cancer (GC) is a common and lethal malignancy, and AMP-activated protein kinase-related kinase 5 (ARK5) has been discovered to promote cancer metastasis in certain types of cancer. In this study, we explored the role of ARK5 in GC invasion and metastasis. Methods: ARK5 and epithelial-mesenchymal transition (EMT)-related markers were determined by immunohistochemistry and western blot in GC specimens. Other methods including stably transfected against ARK5 into SGC7901 and AGS cells, western blot, migration and invasion assays in vitro and nude mice tumorigenicity in vivo were also employed. Results: The results demonstrated that ARK5 expression was increased and positively correlated with metastasis, EMT-related markers and poor prognosis in patients with GC. Knockdown of ARK5 expression remarkably suppressed GC cells invasion and metastasis via regulating EMT, rather than proliferation in vitro and in vivo. And knockdown of ARK5 expression in GC cells resulted in the down-regulation of the mTOR/p70S6k signals, Slug and SIP1. Conclusion: The elevated ARK5 expression was closely associated with cancer metastasis and patient survival, and it seemed to function in GC cells migration and invasion via EMT alteration, together with the alteration of the mTOR/p70S6k signals, Slug and SIP1, thus providing a potential therapeutic target for GC.


2018 ◽  
Vol 48 (5) ◽  
pp. 1928-1941 ◽  
Author(s):  
Chuan He ◽  
Zhigang Liu ◽  
Li Jin ◽  
Fang Zhang ◽  
Xinhao Peng ◽  
...  

Background/Aims: MicroRNA-142-3p (miR-142-3p) is dysregulated in many malignancies and may function as a tumor suppressor or oncogene in tumorigenesis and tumor development. However, few studies have investigated the clinical significance and biological function of miR-142-3p in hepatocellular carcinoma (HCC). Methods: The expression levels of taurine upregulated gene 1 (TUG1), miR-142-3p, and zinc finger E-box-binding homeobox 1 (ZEB1) were evaluated in HCC tissues and cell lines by quantitative real-time PCR. MTT and colony formation assays were used to detect cell proliferation ability, transwell assays were used to assess cell migration and invasion, and luciferase reporter assays were used to examine the interaction between the long noncoding RNA TUG1 and miR-142-3p. Tumor formation was evaluated through in vivo experiments. Results: miR-142-3p was significantly downregulated in HCC tissues, but TUG1 was upregulated in HCC tissues. Knockdown of TUG1 and upregulation of miR-142-3p inhibited cell proliferation, cell migration, cell invasion, and the epithelial-mesenchymal transition (EMT). miR-142-3p was found to be a prognostic factor of HCC, and the mechanism by which TUG1 upregulated ZEB1 was via direct binding to miR-142-3p. In vivo assays showed that TUG1 knockdown suppressed cell proliferation and the EMT in nude mice. Conclusion: The results of this study suggest that the TUG1/miR-142-3p/ ZEB1 axis contributes to the formation of malignant behaviors in HCC.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Songwen Ju ◽  
Feng Wang ◽  
Yirong Wang ◽  
Songguang Ju

AbstractHypoxic stress plays a pivotal role in cancer progression; however, how hypoxia drives tumors to become more aggressive or metastatic and adaptive to adverse environmental stress is still poorly understood. In this study, we revealed that CSN8 might be a key regulatory switch controlling hypoxia-induced malignant tumor progression. We demonstrated that the expression of CSN8 increased significantly in colorectal cancerous tissues, which was correlated with lymph node metastasis and predicted poor patient survival. CSN8 overexpression induces the epithelial-mesenchymal transition (EMT) process in colorectal cancer cells, increasing migration and invasion. CSN8 overexpression arrested cell proliferation, upregulated key dormancy marker (NR2F1, DEC2, p27) and hypoxia response genes (HIF-1α, GLUT1), and dramatically enhanced survival under hypoxia, serum deprivation, or chemo-drug 5-fluorouracil treatment conditions. In particular, silenced CSN8 blocks the EMT and dormancy processes induced by the hypoxia of 1% O2 in vitro and undermines the adaptive capacity of colorectal cancer cells in vivo. The further study showed that CSN8 regulated EMT and dormancy partly by activating the HIF-1α signaling pathway, which increased HIF-1α mRNA expression by activating NF-κB and stabilized the HIF-1α protein via HIF-1α de-ubiquitination. Taken together, CSN8 endows primary colorectal cancer cells with highly aggressive/metastatic and adaptive capacities through regulating both EMT and dormancy induced by hypoxia. CSN8 could serve as a novel prognostic biomarker for colorectal cancer and would be an ideal target of disseminated dormant cell elimination and tumor metastasis, recurrence, and chemoresistance prevention.


Author(s):  
Samriddhi Arora ◽  
Jyoti Tanwar ◽  
Nutan Sharma ◽  
Suman Saurav ◽  
Rajender K. Motiani

Pancreatic cancer (PC) is one of the most lethal forms of cancers with 5-year mean survival rate of less than 10%. Most of the PC associated deaths are due to metastasis to secondary sites. Calcium (Ca2+) signaling plays a critical role in regulating hallmarks of cancer progression including cell proliferation, migration and apoptotic resistance. Store operated Ca2+ entry (SOCE) mediated by Orai1/2/3 channels is a highly regulated and ubiquitous pathway responsible for Ca2+ influx into non-excitable cells. In this study, we performed extensive bioinformatic analysis of publicly available datasets and observed that Orai3 expression is inversely associated with the mean survival time of PC patients. Orai3 expression analysis in a battery of PC cell lines corroborated its differential expression profile. We then carried out thorough Ca2+ imaging experiments in 6 PC cell lines and found that Orai3 forms a functional SOCE in PC cells. Our in vitro functional assays show that Orai3 regulates PC cell cycle progression, apoptosis and migration. Most importantly, our in vivo xenograft studies demonstrate a critical role of Orai3 in PC tumor growth and secondary metastasis. Mechanistically, Orai3 controls G1 phase progression, matrix metalloproteinase expression and epithelial-mesenchymal transition in PC cells. Taken together, this study for the first time reports that Orai3 drives aggressive phenotypes of PC cells i.e. migration in vitro and metastasis in vivo. Considering that Orai3 expression is inversely associated with the PC patients survival time, it appears to be a highly attractive therapeutic target.


2020 ◽  
Author(s):  
Sisi Wei ◽  
Shiping Sun ◽  
Xinliang Zhou ◽  
Cong Zhang ◽  
Xiaoya Li ◽  
...  

Abstract A substantial fraction of transcripts are known as long noncoding RNAs (lncRNAs), and these transcripts play pivotal roles in the development of cancer. However, little information has been published regarding the functions of lncRNAs in oesophageal squamous cell carcinoma (ESCC) and the underlying mechanisms. In our previous studies, we demonstrated that small nucleolar RNA host gene 5 (SNHG5), a known lncRNA, is dysregulated in gastric cancer (GC). In this study, we explored the expression and function of SNHG5 in development of ESCC. SNHG5 was found to be downregulated in human ESCC tissues and cell lines, and this downregulation was associated with cancer progression, clinical outcomes and survival rates of ESCC patients. Furthermore, we also found that overexpression of SNHG5 significantly inhibited the proliferation, migration and invasion of ESCC cells in vivo and in vitro. Notably, we found that metastasis-associated protein 2 (MTA2) was pulled down by SNHG5 in ESCC cells using RNA pulldown assay. We also found that SNHG5 reversed the epithelial–mesenchymal transition by interacting with MTA2. In addition, overexpression of SNHG5 downregulated the transcription of MTA2 and caused its ubiquitin-mediated degradation. Thus, overexpression of MTA2 partially abrogated the effect of SNHG5 in ESCC cell lines. Furthermore, we found that MTA2 mRNA expression was significantly elevated in ESCC specimens, and a negative correlation between SNHG5 and MTA2 expression was detected. Overall, this study demonstrated, for the first time, that SNHG5-regulated MTA2 functions as an important player in the progression of ESCC and provide a new potential therapeutic strategy for ESCC.


2019 ◽  
Vol 27 (4) ◽  
pp. 1355-1368 ◽  
Author(s):  
Kefei Yuan ◽  
Kunlin Xie ◽  
Tian Lan ◽  
Lin Xu ◽  
Xiangzheng Chen ◽  
...  

Abstract Metastasis is one of the main contributors to the poor prognosis of hepatocellular carcinoma (HCC). However, the underlying mechanism of HCC metastasis remains largely unknown. Here, we showed that TXNDC12, a thioredoxin-like protein, was upregulated in highly metastatic HCC cell lines as well as in portal vein tumor thrombus and lung metastasis tissues of HCC patients. We found that the enforced expression of TXNDC12 promoted metastasis both in vitro and in vivo. Subsequent mechanistic investigations revealed that TXNDC12 promoted metastasis through upregulation of the ZEB1-mediated epithelial–mesenchymal transition (EMT) process. We subsequently showed that TXNDC12 overexpression stimulated the nuclear translocation and activation of β-catenin, a positive transcriptional regulator of ZEB1. Accordingly, we found that TXNDC12 interacted with β-catenin and that the thioredoxin-like domain of TXNDC12 was essential for the interaction between TXNDC12 and β-catenin as well as for TXNDC12-mediated β-catenin activation. Moreover, high levels of TXNDC12 in clinical HCC tissues correlated with elevated nuclear β-catenin levels and predicted worse overall and disease-free survival. In summary, our study demonstrated that TXNDC12 could activate β-catenin via protein–protein interaction and promote ZEB1-mediated EMT and HCC metastasis.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Xiong Lei ◽  
Yahang Liang ◽  
Jian Chen ◽  
Shuai Xiao ◽  
Jian Lei ◽  
...  

Abstract Metastasis-associated recurrence is the main cause for the poor prognosis of hepatocellular carcinoma (HCC). However, the detailed molecular mechanisms underlying HCC metastasis remain elusive. Though some data indicated the oncogenic role of Sorcin in tumors, the prognostic value and biological role of Sorcin in HCC is still unknown. In this study, it demonstrated that Sorcin expression levels were significantly upregulated in HCC tumor tissues compared with matched adjacent nontumorous liver tissues and normal liver tissues, and such expression level correlated with HCC metastasis. High Sorcin expression was significantly correlated with aggressive clinicopathological characteristics such as multiple tumor nodules, high Edmondson-Steiner grade, microvascular invasion, advanced TNM stage and advanced BCLC stage (all P < 0.05). HCC patients with high Sorcin expression had both shorter survival and higher recurrence than those with low Sorcin expression (all P < 0.05). Sorcin expression was an independent and significant risk factor for survival and recurrence of HCC patients. Results of functional experiments showed that Sorcin could promote HCC cell proliferation, migration, and invasion in vitro, and facilitate HCC growth and metastasis in vivo. Mechanistically, Sorcin exerted its role by activating extracellular signal-regulated kinase (ERK) pathway and promoted metastasis by facilitating epithelial-mesenchymal transition (EMT) in HCC.


Sign in / Sign up

Export Citation Format

Share Document