scholarly journals Development and Evaluation of Solvent-Based Cold Patching Asphalt Mixture Based on Multiscale

2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Shuolei Huang ◽  
Junda Ren ◽  
Mingguang Li ◽  
Zhuolin Li ◽  
Shuiwen Zhou

In order to prepare a kind of high-performance asphalt pavement pit repair material and extend the service life of the road, this paper starts from the microscopic view of the raw materials, uses infrared spectrum, four component analysis method, lying drop method, column wick technology principle, etc. to select the raw materials and determine the initial amount of the cold patching asphalt mixture, and optimizes the formula through the orthogonal test design and adhesion, cohesion, initial stage strength, later strength, residual stability, and other performance indexes, and determines the final formula of cold patching asphalt mixture as follows: the design porosity is 15 ± 0.5%, compatibilizer is 2.5%, linear SBS modifier is 5%, tackifier is 4%, antistripping agent is 3.5%, and the dosage of diluent D should be determined according to the ambient temperature. The results show that the performance of the self-made cold patching asphalt mixture is good verified by adhesion grade, strength, high temperature stability, water stability, and other road performance.

2021 ◽  
Author(s):  
Aiping Fei ◽  
TIEZHI ZHANG ◽  
Zhongwei Ruan

Abstract In order to study the road performance of asphalt mixture with different kinds of iron waste ore , stripping waste rock rich in iron trioxide and stripping waste rock rich in iron oxide are used as aggregate to make the mixture.Through the test comparison, it is confirmed that the dynamic stability performance of asphalt concrete mixture mixed with iron trioxide mining and stripping waste rock is the best, namely its high temperature stability is best; followed by the one mixed with waste rock rich in iron trioxide. The residue stability of asphalt concrete mixed with mining and stripping waste rock increases obviously. It can found from the experiments that the residual stability can be up to 94.96% which kinds of asphalt mixture with waste rock rich in iron trioxide. Asphalt mixture mixed with stripping waste rock has a better anti-sliding performance than the common one, among which the one mixed with aggregates rich in iron trioxide is the best. Through tectonic depth, it is reflected that it also has a better performance on drainage noise reduction. In conclusion, using mining and stripping waste rock instead of mining gravel has a good economic efficiency,but also solved the problem of mining and stripping waste rock accumulation.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Sun Min ◽  
Yufeng Bi ◽  
Mulian Zheng ◽  
Sai Chen ◽  
Jingjing Li

The energy consumption and greenhouse gas emission of asphalt pavement have become a very serious global problem. The high-temperature stability and durability of polyurethane (PU) are very good. It is studied as an alternative binder for asphalt recently. However, the strength-forming mechanism and the mixture structure of the PU mixture are different from the asphalt mixture. This work explored the design and performance evaluation of the PU mixture. The PU content of mixtures was determined by the creep slope (K), tensile strength ratios (TSR), immersion Cantabro loss (ICL), and the volume of air voids (VV) to ensure better water stability. The high- and low-temperature stability, water stability, dynamic mechanical property, and sustainability of the PU mixture were evaluated and compared with those of the stone matrix asphalt mixture (SMA). The test results showed that the dynamic stability and bending strain of the PU mixture were about 7.5 and 2.3 times of SMA. The adhesion level of PU and the basalt aggregate was one level greater than the limestone, and basalt aggregates were proposed to use in the PU mixture to improve water stability. Although the initial TSR and ICL of PU mixture were lower, the long-term values were higher; the PUM had better long-term water damage resistance. The dynamic modulus and phase angles (φ) of the PU mixture were much higher. The energy consumption and CO2 emission of the PU mixture were lower than those of SMA. Therefore, the cold-mixed PU mixture is a sustainable material with excellent performance and can be used as a substitute for asphalt mixture.


2019 ◽  
Vol 136 ◽  
pp. 03010
Author(s):  
Ma Qingna ◽  
Zhao Zhiqin ◽  
Xu Qian ◽  
Sun Feng

Adding sulphur dilution asphalt modifier SEAM to asphalt mixture is not only a modifier of asphalt mixture, but also an additive of asphalt mixture. When the modifier is added into the asphalt mixture, the road performance of the asphalt mixture can be improved. This paper studies SEAM modified asphalt mixture the Marshall property index, temperature stability, Water stability and fatigue feature in the Laboratory. On the based of the result of the experiment and analysis, SEAM can improve the high temperature stability, Water stability and fatigue feature. But the low temperature stability can’t improve.


2013 ◽  
Vol 361-363 ◽  
pp. 1681-1688 ◽  
Author(s):  
Hai Sheng Zhao ◽  
Wei Chen ◽  
Xiao Yan Wang

This paper used one kind of organic additive LEADCAP to reduce the compacting temperature of SBS WMA mixture, and compared the WMA mixture compacted by superpave gyratory compactor (SGC) with HMA mixture to determine the compacting temperature of WMA mixture. Rutting test, low temperature bending test, freeze-thaw indirect tension test, Hamburg Wheel-Track test and dynamic modulus were carried out to evaluate the road performance of WMA mixed with LEASCAP. The test result showed that the WMA mixed with LEADCAP had well performed high temperature stability, low temperature stability, water stability, rutting cracking resistance, and high dynamic modulus, the compacting temperature were 127 °C, and affectively reduced the compacting temperature of SBS WMA mixture.


2012 ◽  
Vol 178-181 ◽  
pp. 1338-1343
Author(s):  
Wei Jiang ◽  
Jing Jing Xiao

According to the porous asphalt concrete’s big void structure as well as high temperature and rainy application environment, the author point out that using the conventional evaluation index such as high temperature stability and water stability to evaluate the PAC’s performance seem single, and then put up with estimating the PAC’s pavement performance by means of Hamburg Wheel Tracking under the water-high temperature’s comprehensive action. Studied on the PAC with the same raw materials and different gradations, and compared with the experimental results of AC-13 modified asphalt mixture and SMA-13, the results shows that, Hamburg Wheel Tracking test not only considered the water-high temperature’s comprehensive action on mixture, but also considered the mixture’s performance decay under long-term loading. Hamburg Wheel Tracking test can evaluate the PAC’s performance more practically, the PAC which materials and graduations reasonably designed have good performance, and its Hamburg Wheel Tracking final deformation is only 3.89mm, it can satisfy the demand from the high temperature and rainy environment. As well, the test results also comes to the conclusions that under the same materials and the same air voids, the PAC with coarse framework structure own better water stability and water-high temperature stability.


2014 ◽  
Vol 694 ◽  
pp. 118-122
Author(s):  
Jie Xiao ◽  
Zhi Fan Mo ◽  
Hong Xin Lu ◽  
Xian Yuan Tang

A series of laboratory tests on warm-mix AC-13 dense gradation asphalt mixture with 3% EC120 were carried out by the method of identical volume. A comparative analysis of common hot asphalt mixture was performed. The results indicate that the reduction of compaction temperature of warm-mix modified bitumen mixture is 27.1°C with addition of 3% EC120. The road performances of warm-mix asphalt mixture determined by the method of identical volume satisfied the specification. Compared to the common hot asphalt mixture, the warm-mix modified asphalt mixture has excellent high temperature stability, slightly low moisture susceptibility and better low-temperature crack resistance.


2013 ◽  
Vol 368-370 ◽  
pp. 764-770
Author(s):  
Xing Long Zhu ◽  
Dean Jiang

Pure crumb rubber asphalt mixture using dry process has certain requirement of mineral gradation with the potential disadvantage of uneven mixing under the traditional temperature. In this paper the gradation design of asphalt mixture Sup-13 mixed with TOR and crumb rubber using dry process was studied with the Superpave design method, pavement performance of asphalt mixture including high temperature stability, cracking resistance at low temperature and water stability was tested in the experiment. Results show that Superpave design method is suitable for the research on the asphalt mixture of TOR and rubber, with getting moving stability 3682 times/mm, failure strain 2573.8με, residual stability 84.8% and the ratio of freeze-thaw splitting 80.1%. The performance is so good to meet the requirements for asphalt pavement performance.


2011 ◽  
Vol 243-249 ◽  
pp. 4323-4327
Author(s):  
Gang Xu ◽  
Li Hua Zhao ◽  
Jing Zhao

This paper selects three different fibers: short-cut mineral fiber, mineral cotton fiber and lignin fiber, through the laboratory test to analysis the homogeneity and way-use performance of fiber SMA. Contrast test results show that the homogeneity of adding mineral cotton fiber and lignin fiber of SMA mixture is nearly at the same degree, which are all better than adding short-cut mineral fiber. Adding short-cut mineral fiber with SMA has poor water stability, but the high temperature stability is the best; At the same time, the homogeneity of the fiber asphalt mixture in this paper has a certain effect with the road performance, but impacts little with the absolute value of it.


2011 ◽  
Vol 97-98 ◽  
pp. 321-326 ◽  
Author(s):  
Xiao Hua Zhao ◽  
Xie Dong Zhang

Based on the feasibility analysis of the chloride’s released capability, a certain proportion of the chloride was added into the ordinary asphalt mixture to form a new chloride-stored asphalt mixture. The mixing proportion was determined and its pavement and anti-icing performance were analyzed. The research indicates that: the stored chloride has good releasability. The new asphalt mixture not only has better high temperature stability and low temperature anti-bending capability than the ordinary one, but could also remove the road ice effectively.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Zhenxia Li ◽  
Tengteng Guo ◽  
Yuanzhao Chen ◽  
Menghan Zhang ◽  
Qingyu Xu ◽  
...  

In order to improve the road performance of drainage SBS modified asphalt mixture, basalt fiber was added to prepare drainage styrene-butadiene-styrene (SBS) modified asphalt mixture. The viscosity-toughness, toughness, and 60°C dynamic viscosity of SBS modified asphalt were tested. The modification effect was evaluated from the perspective of high and low temperature rheological properties by dynamic shear rheometer (DSR) and bending beam rheometer (BBR) tests. The high temperature stability, water stability, low temperature crack resistance, and drainage of basalt fiber SBS drainage asphalt mixture were evaluated and compared with nonfiber SBS drainage asphalt mixture and TPS drainage asphalt mixture. The morphology characteristics of asphalt mixture and the distribution of basalt fiber in the mixture were analyzed from a micro perspective. The results showed the following: the overall performance of basalt fiber is better than that of lignin fiber. SBS modifier content in 7% can meet the requirements of drainage asphalt pavement on asphalt binder. The optimum asphalt content of SBS modified asphalt mixture with basalt fiber content of 0, 0.15, 0.25, and 0.35% is 4.9, 5.05, 5.15, and 5.2%. The fiber is irregularly distributed in the mixture to form a three-dimensional network structure, which has a series skeleton function. It plays a tensile role in the initial cracking of asphalt mixture and prevents further expansion of cracks.


Sign in / Sign up

Export Citation Format

Share Document