scholarly journals Performance of Novel Engineered Materials from Epoxy Resin with Modified Epoxidized Natural Rubber and Nanocellulose or Nanosilica

2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Aunnuda Lanna ◽  
Montri Suklueng ◽  
Chainuson Kasagepongsan ◽  
Sunisa Suchat

Performance of new engineered material from epoxy resins with modified epoxidized natural rubber (ENR) and nanofillers were investigated. ENR from renewable natural crop resources is a type of green material with potential to partially substitute or replace and toughen petrochemical-based polymers. Nanocomposites (epoxy resin/ENR/fillers nanoparticles) were characterized with Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), atomic force microscope (AFM), and scanning electron microscopy (SEM). Comparison of characterized and mechanical properties of nanofiller reinforced with both nanocellulose and nanosilica were studied. The nanocomposites were characterized for their mechanical properties (e.g., impact strength, tensile strength) and thermal degradation behaviour by thermal gravimetric analysis (TGA). Mechanical property investigation results show that, the impact strength of nanocomposites, can be improved by blending in ENR 50 mixed with nanofiller, relative to the baseline nanocomposite mixers. The nanofiller loading in epoxy composite showed the highest improvement in mechanical properties at 0.75 phr (parts per hundred of resin). Effects of accelerated weathering aging were evaluated, and the observed changes were larger with nanosilica than with nanocellulose filler. Here, the accelerated aging increase in tensile properties was found to be 10% after 14 days in both nanofillers, while the other mechanical properties did not change significantly. These nanocomposites are expected to have high wear rates limiting their service life.

Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1293
Author(s):  
Sunisa Suchat ◽  
Aunnuda Lanna ◽  
Aujchariya Chotikhun ◽  
Salim Hiziroglu

The objective of this study was to investigate the basic properties of composite materials that were made from epoxidized natural rubber and nanosilica to be used as blades for drones. Nanocomposite samples were prepared with 5% of epoxidized natural rubber and epoxy resin loaded with 3% nanosilica. Their resistance against accelerated weathering conditions as well as mechanical properties, including flexural strength, impact strength, and hardness, were evaluated. Based on the findings of this work, the impact strength of the samples decreased 13.33% and 33.33% as a result of exposing them to weathering by UV radiation for 168 h and 336 h, respectively. However, their tensile strength properties enhanced 35.71% and 19.05% for the above corresponding exposure time spars. Experimental composite samples that were made in this study would have great potential to be used as raw material for propeller blade for drones based on their properties evaluated within the scope of this work.


2018 ◽  
Vol 14 (3) ◽  
pp. 348-352 ◽  
Author(s):  
Nur Amira Sahirah Abdullah ◽  
Zurina Mohamad

Poly (lactic acid)/epoxidized natural rubber (PLA/ENR) was prepared by using counter-rotating twin-screw extruder. For dynamic vulcanization process, ENR was compounded with 3 phr of N, N’-m-phenylenebismaleimide (HVA-2) as a crosslinking agent. The aim of this study is to determine the effect of unvulcanized and dynamically vulcanized of ENR on the properties of PLA/ENR blend. The blending of PLA with ENR was prepared with the various composition of ENR (0 wt% to 30 wt%). The morphology and mechanical properties of the blends were investigated by using scanning electron microscope (SEM), tensile test, and impact test. The unvulcanized blend produced a co-continuous morphology of PLA and ENR and the dynamically vulcanized blend shows the dispersed ENR rubber particles in PLA continuous matrix.  For both systems, the tensile strength value was dropped with the increasing amount of ENR content. The impact strength of both systems shows the maximum value at 20 wt% of ENR content. However, dynamically vulcanized PLA/ENR blend shows a better tensile strength and impact strength value as compared with unvulcanized blend.


2012 ◽  
Vol 576 ◽  
pp. 318-321 ◽  
Author(s):  
Bonnia Noor Najmi ◽  
Sahrim Haji Ahmad ◽  
Surip Siti Norasmah ◽  
S.S. Nurul ◽  
Noor Azlina Hassan ◽  
...  

Crosslinked polyester clay nanocomposites were prepared by dispersing originically modified montmorillonite in prepromoted polyester resin and subsequently crosslinked using methyl ethyl ketone peroxide catalyst at different clay concentration. Cure process and the mechanical properties of rubber toughened polyester clay composite have been studied. Rubber toughened thermoset polyester composite were prepared by adding 3 per hundred rubber (phr) of liquid natural rubber (LNR) was used in the mixing of producing this composite. Modification of polyester matrix was done due to the brittle problem of polyester composite. Addition of LNR will increase the toughness of composite and produce ductile polyester. Two types of composites were produced which is clay-lnr polyester composite and clay polyester composite. Addition of liquid natural rubber significantly increased the impact strength and flexural properties. Result shows that addition of 6% of clay-lnr composite give good properties on impact, strength and flexural. From the ESCR test, both composites showed good resistance to environmental.


2012 ◽  
Vol 482-484 ◽  
pp. 1959-1962 ◽  
Author(s):  
Quan Fu Yin ◽  
Ming Wei Di

Lignin/epoxy resin composites were prepared by blending lignin with epoxy resin cured by polyamide. The effect of the content of lignin and polyamide on the mechanical properties of the lignin/epoxy resin composites was studied systemically. And the structure for the blend of lignin and epoxy resin without the curing agent was characterized by Fourier transform infrared spectroscopy (FTIR). The results of mechanical properties test showed that the bending strength of the composites decreases gradually with increasing the content of lignin, while the impact strength increased firstly and then decreased. The bending strength of lignin/epoxy resin composites showed a trend of increasing firstly and then decreasing with the increase of the content of polyamide, while the impact strength exhibited an opposite trend. The density for the composites increased with the addition of lignin, and polyamide exhibited an inconspicuous effect on density of the composites. The FTIR analysis results showed that the epoxy resin could be cured by lignin without polyamide, which concluded that the lignin could catalyze the cross-linking of epoxy resin or react with epoxy resin, and this bonding effect would beneficial to the properties of lignin/epoxy resin composites.


Author(s):  
Sergey Savotchenko ◽  
Ekaterina Kovaleva

We study experimentally the influence of mass fraction of L-20 hardener cold cure on mechanical properties of epoxy diane resin ED-20. We measure the hardness, tensile strength, bending strength and impact strength of resin at different values of the hardener mass fraction. It is found that the ratio hardener mass fraction of 1:0.9 leads to the highest values of the hardness, tensile strength, compressive strength and bending strength. The impact viscosity is maximum at the ratio hardener mass fraction of 1:0.8. The optimal ratio of a non-toxic safe hardener to the resin is derived based on obtained mechanical characteristics.


2014 ◽  
Vol 983 ◽  
pp. 179-182 ◽  
Author(s):  
Maneewong Chutamas ◽  
Sunthornvarabhas Jackapon ◽  
Joong Kim Hyun ◽  
Sriroth Klanarong

Poly-β-hydroxybutyrate-co-β-hydroxyvalerate (PHBV) is a bacterial-synthesized biopolymer. Moreover, PHBV is a biodegradable, it is an interesting biopolymer for disposable products. PHBV is difficult to process due to its low toughness, an elastic polymer such as natural rubber is introduced to develop toughness. In this experiment, PHBV mechanical properties were improved by blending with natural rubber (NR) and epoxidized natural rubber (ENR). The NR/PHBV and ENR/PHBV blends with the same ratio of 10/90 (wt/wt) could be extruded, whereas other conditions could not. This ratio was then used throughout this study to examine effect of maleic anhydride (MA) and benzoyl peroxide (BPO) to improve toughness of the blends. Result showed at composition where 1.0 % (wt/wt) MA and 0.05 % (wt/wt) BPO was mixed (coding EPMB2), several aspects of mechanical properties were improved. The blend, EPMB2 revealed the highest impact strength, significantly improved of elongation but drastically decreased of tensile strength. Storage modulus slightly decreased, tangent delta significantly increased when compared with neat PHBV.


2013 ◽  
Vol 747 ◽  
pp. 538-541 ◽  
Author(s):  
Suparat Nooma ◽  
Rathanawan Magaraphan

In this work, epoxidized natural rubber (ENR) is used to improve the impact strength of poly (methyl methacrylate) (PMMA). The natural rubber with poly (3-trimethoxysilyl propyl methacrylate) core-shell (adNR), prepared by admicellar polymerization, is used as the compatibilizer for PMMA/ENR blends which were prepared through melt mixing in a twin screw extruder. The effects of ENR and adNR contents on impact property were investigated by pendulum impact tester. The impact strength increased with ENR and adNR contents. The morphology on the fracture surfaces were demonstrated by using field emission electron microscope (FE-SEM), which showed the compatibility between ENR, adNR and PMMA. Furthermore, the effects of ENR and adNR contents on dynamic and mechanical properties were examined by dynamic mechanical analyzer and universal testing machine, respectively. The results illustrated that the incorporation of the adNR affected the dynamic and mechanical properties of the blends.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3576
Author(s):  
Martyna Roszowska-Jarosz ◽  
Joanna Masiewicz ◽  
Marcin Kostrzewa ◽  
Wojciech Kucharczyk ◽  
Wojciech Żurowski ◽  
...  

The aim of our research was to investigate the effect of a small nanocellulose (NC) addition on an improvement of the mechanical properties of epoxy composites. A procedure of chemical extraction from pressed lignin was used to obtain nanocellulose fibers. The presence of nanoparticles in the cellulose pulp was confirmed by FTIR/ATR spectra as well as measurement of nanocellulose particle size using a Zetasizer analyzer. Epoxy composites with NC contents from 0.5% to 1.5% w/w were prepared. The obtained composites were subjected to strength tests, such as impact strength (IS) and resistance to three-point bending with a determination of critical stress intensity factor (Kc). The impact strength of nanocellulose composites doubled in comparison to the unmodified epoxy resin (EP 0). Moreover, Kc was increased by approximately 50% and 70% for the 1.5 and 0.5% w/w NC, respectively. The maximum value of stress at break was achieved at 1% NC concentration in EP and it was 15% higher than that for unmodified epoxy resin. The highest value of destruction energy was characterized by the composition with 0.5% NC and corresponds to the increase of 102% in comparison with EP 0. Based on the analysis of the results it was noted that satisfactory improvement of the mechanical properties of the composite was achieved with a very small addition of nanofiller while other research indicates the need to add much more nanocellulose. It is also expected that this kind of use of raw materials will allow increasing the economic efficiency of the nanocomposite preparation process. Moreover, nanocomposites obtained in this way can be applied as elements of machines or as a modified epoxy matrix for sandwich composites, enabling production of the structure material with reduced weight but improved mechanical properties.


2011 ◽  
Vol 410 ◽  
pp. 43-46
Author(s):  
Sawitri Srisuwan ◽  
N. Prasoetsopha ◽  
Nitinat Suppakarn ◽  
Pranee Chumsamrong

In the present work, bisphenol-A based epoxy resin was blended with methyl methacrylate (MMA)/glycidyl methacrylate (GMA) grafted depolymerized natural rubber (GDNR). GDNR/epoxy resin blend was composite with woven sisal fiber. GDNR was prepared by solution grafting MMA/GMA (90/10 w/w%) onto depolymerized natural rubber (DNR). The occurrence of GDNR was confirmed by proton nuclear magnetic resonance spectroscopy (1H-NMR). Amount of GDNR in the blend was 1 part per hundred resins. Impact strength of epoxy resin was increased by 62% when GDNR was added. Composites of GDNR/epoxy resin and woven sisal fiber were prepared by hand-lay up process. Amounts of woven sisal fiber in the composite were 3, 5 and 7% by weight (wt%). The flexural modulus of the composites was higher than that of neat epoxy resin and increased with increasing amount of woven sisal fiber. Nevertheless, flexural strength of all composites was lower than those of neat epoxy resin and the blend. Compared to neat epoxy resin, the impact strength of the composite containing 7 wt% woven sisal fiber was further increased to 114%.


2020 ◽  
Vol 36 ◽  
pp. 114-125
Author(s):  
Kanwal Jit Singh ◽  
Rohit Kumar ◽  
Ramratan

The wheat husk pulp epoxy resin composites were prepared by compression Molding Method and their physical and Mechanical Properties were studied by universal testing Machine. The composites were tested by tensile strength testing and impact strength tester. The content of Wheat husk pulp is varied (35%, 45%, 55%) weight percentage whereas the epoxy resin is varied (50%, 40%, 30%) percentage is kept constant 15% in hardener. Composites have been fabricated using hand layup technique using a suitable mold developed in industry. All the sample have been tested in Universal testing machine as per ASTM standard for tensile strength and impact strength it is observed that composite with 35% wheat husk pulp is having highest tensile strength of 4mm (4.29MPa) and 8mm (6.31Mpa). The impact strength of Composite with 35% wheat husk pulp was highest than 35%to 45% wheat husk pulp.


Sign in / Sign up

Export Citation Format

Share Document