scholarly journals Characterization of Plasmid-Mediated Quinolone Resistance and Serogroup Distributions of Uropathogenic Escherichia coli among Iranian Kidney Transplant Patients

2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Amin Sadeghi ◽  
Mehrdad Halaji ◽  
Amirhossein Fayyazi ◽  
Seyed Asghar Havaei

Introduction. Urinary tract infection (UTI) is one of the most frequent infections in kidney transplant patients (KTPs). This infection is mainly caused by uropathogenic Escherichia coli (UPEC). Plasmid-mediated quinolone resistance (PMQR) was also increasingly identified in UPEC. This study proposed to investigate the frequency of quinolone-resistance plasmid genes and the O-antigen serogroup among UPEC isolated from KTPs and non-KTP with UTI. Methods. Totally, 114 UPEC isolates from 49 KTPs and 65 non-KTPs patients diagnosed with an UPEC-associated UTI were obtained from June 2019 to December 2019 at three laboratory centers in Isfahan, Iran. The isolates were confirmed through phenotypic and genotypic methods. Moreover, the antimicrobial susceptibility test to nalidixic acid, ciprofloxacin, norfloxacin, and ofloxacin was performed using a disk diffusion method. The presence of the qnr gene as well as the serogroup distribution was identified using the PCR method. Result. According to data, the distribution of O1, O2, O4, O16, and O25 serogroups were 3.5%, 2.6, 3.5, 3.5, and 20.2%, respectively. Antibiotic susceptibility pattern revealed that the highest and lowest resistance rates were to nalidixic acid (69.3%) and norfloxacin (43.9%), respectively. Also, the frequency of qnrS and qnrB genes were 33.3% and 15.8%, respectively, while none of the isolates was found to be positive for the qnrA gene. There was no significant association between the presence of qnr genes and higher antibiotic resistance. Conclusion. This study recognized that the qnrS gene, O25 serotype, and resistance to nalidixic acid had the highest frequencies in UPEC strains isolated from UTI patients.

Author(s):  
Mehrdad Halaji ◽  
Shahrzad Shahidi ◽  
Behrooz Ataei ◽  
Abdolamir Atapour ◽  
Awat Feizi ◽  
...  

Abstract Background This study aimed to investigate the phylogenetic characterization and virulence traits of uropathogenic Escherichia coli (UPEC) isolated from kidney transplant patients (KTPs) as well as non-KTPs and analyze the clonal distribution of Extended spectrum β-lactamases (ESBLs)-producing UPEC containing blaCTX-M gene. Methods To this end, we determined virulence marker and the phylogenetic characterization of UPEC in non-KTPs (n = 65) and KTPs (n = 46). The non-KTPs were considered the control group of the study. Also, according to the Achtman scheme, we performed multilocus sequence typing to assess the relationship between twenty-nine of ESBL-producing isolates containing blaCTX-M gene. Results According to the results of PCR assay, the prevalence of virulence factor genes ranged from 0% (cnf and papG III) to 93.7% (fimH). Also, KTP isolates significantly differed from non-KTP isolates only in terms of the prevalence of pap GI elements. Moreover, the most frequent UPEC isolates were in phylogenetic group B2, followed by group D (18.9%), and group A (13.5%). Furthermore, except for phylogenetic group C, there was no significant correlation between phylogenetic distribution in KTPs and non-KTPs. Additionally, MLST analysis of blaCTX-M carrying isolates identified 18 unique sequence types (ST) the most common of which was ST131 (24.1%), followed by ST1193 (10.3%), while fourteen STs were detected only once. Conclusions The results further revealed significant differences between the UPEC isolates from KTPs and non-KTPs regarding the phylogroups C and PAI gene. Based on MLST analysis, we also observed a relatively high diversity in UPEC isolates obtained from KTPs and non-KTPs. Moreover, clonal complex (CC) 131 and ST131 were found to be the most prevalent clones and ST types, respectively. Besides, for the first time, ST8503 were reported in KTPs. These results suggested regular studies on characterization of UPEC isolates among KTPs.


2020 ◽  
Vol Volume 13 ◽  
pp. 1429-1437 ◽  
Author(s):  
Mehrdad Halaji ◽  
Shahrzad Shahidi ◽  
Abdolamir Atapour ◽  
Behrooz Ataei ◽  
Awat Feizi ◽  
...  

2014 ◽  
Vol 8 (07) ◽  
pp. 818-822 ◽  
Author(s):  
Farzaneh Firoozeh ◽  
Mohammad Zibaei ◽  
Younes Soleimani-Asl

Introduction: Plasmid-mediated quinolone resistance, which complicates treatment, has been increasingly identified in Escherichia coli isolates worldwide. The purpose of this study was to identify the plasmid-mediated qnrA and qnrB genes among the quinolone-resistant Escherichia coli isolated from urinary tract infections in Iran. Methodology: A total of 140 Escherichia coli isolates were collected between March and October 2012 from urinary tract infections in Khorram Abad, Iran. All isolates were tested for quinoloe resistance using the disk diffusion method. Also, all quinolone-resistant isolates were screened for the presence of the qnrA and qnrB genes by polymerase chain reaction. Minimum inhibitory concentrations (MICs) of ciprofloxacin for the qnr-positive isolates were determined. Results: One hundred sixteen (82.8%) of 140 Escherichia coli isolates were nalidixic acid-resistant; among them, 14 (12.1%) and 9 (7.8%) were qnrA and qnrB-positive, respectively. Two quinolone-resistant isolates harbored both qnrA and qnrB. Among 63 ciprofloxacin-resistant isolates, 14 (22.2%) and 9 (14.3%) were found to carry qnrA and qnrB genes, respectively. The ciprofloxacin MIC range was 0.25–512 μg/mL for 23 qnr-positive Escherichia coli isolates, 18 of which had MICs values of 4–512 μg/mL. Conclusion: Our study shows that the frequency of plasmid-mediated quinolone resistance genes among E. coli isolates in Iran is high.


2011 ◽  
Vol 5 (12) ◽  
pp. 840-849 ◽  
Author(s):  
José Molina-López ◽  
Gerardo Aparicio-Ozores ◽  
Rosa María Ribas-Aparicio ◽  
Sandra Gavilanes-Parra ◽  
María Elena Chávez-Berrocal ◽  
...  

Introduction: The increasing prevalence of uropathogenic Escherichia coli (UPEC) strains resistant to multiple antibiotics complicates the treatment of urinary tract infections (UTIs). This study aimed to analyze the antimicrobial resistance, serotypes, and phylogenetic groups among strains of E. coli isolated from outpatients with UTIs in Mexico City. Methodology: A total of 119 E. coli isolates were recovered from urine samples from outpatients with clinical diagnosis of uncomplicated UTIs from 2004 to 2007. The serotype was assessed by agglutination in microtiter plates; susceptibility to antimicrobials was determined by the disk diffusion method. Clone O25-ST131 and phylogenetic groups of E. coli strains were tested by methods based on PCR multiplex. Results: The predominant serotype was O25:H4 (21.2%). Resistance to antibiotics was ampicillin (83.7%); piperacillin (53.8%); the fluoroquinolone group (55.5-60.6%), and trimethoprim/sulfamethoxazole (TMP/SMX) (56.4%). Additionally, 36 (30.2%) isolates were multidrug-resistant and 13 of these 36 strains were identified as E. coli O25-ST131 clone by an allele-specific PCR-based assay. Phylogenetic analysis showed that 15 of 17 isolates with serotype O25:H4 belonged to group B2. Conclusions: This is the first report that establishes the presence in Mexico of the O25-ST131 clonal group of E. coli, which has been associated with multidrug-resistance and with high virulence potential. The spread of this clone in Mexico should be monitored closely. We found a correlation between serotype O25:H4 and multidrug resistance in UPEC strains. Our results indicate that the use of ampicillin, fluoroquinolones, and TMP/SMX should be reviewed when selecting empirical therapy for UTIs.


1995 ◽  
Vol 115 (3) ◽  
pp. 475-483 ◽  
Author(s):  
P. M. F. J. Koenraad ◽  
W. F. Jacobs-Reitsma ◽  
T. Van Der Laan ◽  
R. R. Beumer ◽  
F. M. Rombouts

SummaryIn this study, thein vitrosusceptibility of 209 campylobacter strains to the quinolones nalidixic acid, flumequine, ciprofloxacin, enrofloxacin, and to ampicillin, tetracycline and erythromycin was tested by the disk diffusion method. The strains were isolated from poultry abattoir effluent (DWA) and two sewage purification plants (SPA and SPB). Sewage purification plant SPA received mixed sewage, including that from a poultry abattoir, whereas SPB did not receive sewage from any meat-processing industry. The quinolone resistance of the DWA isolates ranged from 28% for enrofloxacin to 50% for nalidixic acid. The strains isolated from the sewage purification plants were more susceptible to the quinolones with a range of 11–18% quinolone resistance for SPB isolates to 17–33% quinolone resistance for SPA isolates. The susceptibility criteria as recommended by National Committee Clinical Laboratory Standards (USA) cannot readily be employed for campylobacter isolates. This investigation shows that the resistance of campylobacter bacteria is highest in the plant receiving sewage from a poultry slaughterhouse. Monitoring of antibiotic resistance of aquaticCampylobacterspp. is important, as surface waters are recognized as possible sources of infection.


2017 ◽  
Vol 5 (4) ◽  
pp. 100-105 ◽  
Author(s):  
Mohadese Amiri ◽  
Maziar Jajarmi ◽  
Reza Ghanbarpour

Background: Antibiotic resistance (AR) is an important challenge in prevention, treatment and control of infectious diseases and is a public health threat for human. Escherichia coli strains are the major causes of urinary tract infections (UTIs). Objective: This research aimed to determine prevalence of resistance to quinolone and fluoroquinolone antibiotics and screen qnr genes among E. coli isolates from UTIs. Materials and Methods: A total of 105 E. coli isolates were obtained from UTI cases in Bojnord city (northeast of Iran) and confirmed by biochemical tests. All strains were studied to determine their resistance to 3 antibiotics including ciprofloxacin, nalidixic acid, and levofloxacin via disk diffusion method. Moreover, the frequency of qnrA, qnrB and qnrS genes and phylogroups was studied by conventional Polymerase chain reaction (PCR). Results: In this study, prevalence of phenotypic AR to ciprofloxacin, nalidixic acid and levofloxacin was 47.6%, 44.8% and 38.1%, respectively. Three isolates were positive for qnrS and 1 isolate was positive for qnrA. Seven phylogenetic groups were also identified as follows: 18% A0, 6.7% A1, 7.6% B1, 1.9% B22, 23.8% B23, 15.3% D1 and 26.7% D2. Conclusion: Prevalence of qnr genes was very low; thus, other types of qnr and plasmid-mediated quinolone resistance genes were probably responsible for the resistance. Phenotypic AR to the 3 antibiotics was found in approximately half of E. coli strains. It is strongly recommended that antibiogram tests should be done before prescribing the ciprofloxacin, nalidixic acid and levofloxacin for UTIs.


2015 ◽  
Vol 53 (11) ◽  
pp. 3411-3417 ◽  
Author(s):  
Robert Skov ◽  
Erika Matuschek ◽  
Maria Sjölund-Karlsson ◽  
Jenny Åhman ◽  
Andreas Petersen ◽  
...  

Fluoroquinolones (FQs) are among the drugs of choice for treatment ofSalmonellainfections. However, fluoroquinolone resistance is increasing inSalmonelladue to chromosomal mutations in the quinolone resistance-determining regions (QRDRs) of the topoisomerase genesgyrA,gyrB,parC, andparEand/or plasmid-mediated quinolone resistance (PMQR) mechanisms includingqnrvariants,aac(6′)-Ib-cr,qepA, andoqxAB. Some of these mutations cause only subtle increases in the MIC, i.e., MICs ranging from 0.12 to 0.25 mg/liter for ciprofloxacin (just above the wild-type MIC of ≤0.06 mg/liter). These isolates are difficult to detect with standard ciprofloxacin disk diffusion, and plasmid-mediated resistance, such asqnr, is often not detected by the nalidixic acid screen test. We evaluated 16 quinolone/fluoroquinolone disks for their ability to detect low-level-resistantSalmonella entericaisolates that are not serotype Typhi. A total of 153Salmonellaisolates characterized for the presence (n= 104) or absence (n= 49) ofgyrAand/orparCtopoisomerase mutations,qnrA,qnrB,qnrD,qnrS,aac(6′)-Ib-cr, orqepAgenes were investigated. All isolates were MIC tested by broth microdilution against ciprofloxacin, levofloxacin, and ofloxacin and by disk diffusion using EUCAST or CLSI methodology. MIC determination correctly categorized all isolates as either wild-type isolates (MIC of ≤0.06 mg/liter and absence of resistance genes) or non-wild-type isolates (MIC of >0.06 mg/liter and presence of a resistance gene). Disk diffusion using these antibiotics and nalidixic acid failed to detect some low-level-resistant isolates, whereas the 5-μg pefloxacin disk correctly identified all resistant isolates. However, pefloxacin will not detect isolates havingaac(6′)-Ib-cras the only resistance determinant. The pefloxacin disk assay was approved and implemented by EUCAST (in 2014) and CLSI (in 2015).


2020 ◽  
Vol 13 (10) ◽  
pp. 2156-2165
Author(s):  
Shah Jungy Ibna Karim ◽  
Mahfuzul Islam ◽  
Tahmina Sikder ◽  
Rubaya Rubaya ◽  
Joyanta Halder ◽  
...  

Background and Aim: Pigeon rearing has been gaining popularity for recent years. They are reared remarkably very close to the house of the owner. This activity, therefore, may pose potential threats for humans as well as other animals as pigeons may carry and spread different pathogens including drug-resistant bacteria. This study was conducted to explore the prevalence of Escherichia coli and Salmonella spp. as well as their antibiogram profile along with an association analysis. Materials and Methods: Forty swab samples were collected from 20 pigeons during the study. E. coli and Salmonella spp. were isolated and identified on various types of agars, including MacConkey, Eosin methylene blue, Brilliant green, and Salmonella-Shigella agar. Biochemical tests such as the carbohydrate fermentation test, the triple sugar iron agar slant reaction, the indole test, the methyl red test, the catalase test, as well as the Voges–Proskauer test were also performed. Besides, the presence of E. coli was further confirmed by polymerase chain reaction (PCR). Moreover, antimicrobial susceptibility testing of the isolates was performed against nine antibiotics from seven classes on the Mueller-Hinton agar based on the Kirby–Bauer disk diffusion method. Results: The overall prevalence of E. coli and Salmonella spp. was 52.5 and 27.5%, respectively. The prevalence of the pathogenic E. coli was 61.90%. The antibiogram profile of 21 E. coli as well as 11 Salmonella spp. revealed that all isolates, except one, were resistant to one to six antibiotics. Around 61.90%, 71.43%, 23.81%, 61.90%, 23.81%, 19.05%, and 52.38% of E. coli showed resistance against amoxicillin, ampicillin, azithromycin, erythromycin, nalidixic acid, gentamicin, and tetracycline, respectively. Furthermore, E. coli resistance was not observed in case of ciprofloxacin and levofloxacin. Similarly, around 36.36%, 27.27%, 27.27%, 45.45%, 81.82%, 100%, and 18.18% of the Salmonella spp. showed resistance against amoxicillin, ampicillin, azithromycin, erythromycin, nalidixic acid, tetracycline, and levofloxacin, respectively. However, all Salmonella spp. (100%) were found to show sensitivity against ciprofloxacin and gentamicin. Multidrug-resistant (MDR) E. coli (23.80%) and Salmonella spp. (54.54%) were also isolated. Furthermore, both positive (odds ratio [OR] >1) and negative (OR <1) drug resistance associations, with a higher frequency of positive associations, were found in E. coli. A significant positive association was observed between ampicillin and amoxicillin (OR: 81.67, 95% confidence interval: 2.73-2447.57, p=0.01). Conclusion: Pigeon carrying MDR E. coli and Salmonella spp. may contribute to the transmission and spread of these microorganisms. Therefore, strict hygienic measures should be taken during the farming of pigeons to decrease the potential transmission of E. coli and Salmonella spp. from pigeon to humans as well as other animals. So far, this is the first report of the PCR-based identification of pathogenic E. coli from pigeons in Bangladesh.


Sign in / Sign up

Export Citation Format

Share Document