scholarly journals Characterization of an IncR Plasmid with Two Copies of ISCR-Linked qnrB6 from ST968 Klebsiella pneumoniae

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Changrui Qian ◽  
Xinyi Zhu ◽  
Junwan Lu ◽  
Kai Shen ◽  
Qianqian Chen ◽  
...  

To characterize the molecular structure of IncR plasmid-related sequences, comparative genomic analysis was conducted using 261 IncR plasmid backbone-related sequences. Among the sequences, 257 were IncR plasmids including the multidrug-resistance IncR plasmid pR50-74 from Klebsiella pneumoniae strain R50 of this work, and the other four were from bacterial chromosomes. The IncR plasmids were derived from different bacterial genera or species, mainly Klebsiella pneumoniae (70.82%, 182/257), Escherichia coli (11.28%, 29/257), Enterobacter cloacae (7.00%, 18/257), and Citrobacter freundii (3.50%, 9/257). The bacterial chromosomes carrying IncR plasmid backbone sequences were derived from Proteus mirabilis AOUC-001 and Klebsiella pneumoniae KPN1344, among others. The IncR backbone sequence of P. mirabilis AOUC-001 chromosome shows the highest identity with that of pR50-74. Complex class 1 integrons carrying various copies of ISCR1-sdr-qnrB6-△qacE/sul1 (ISCR1-linked qnrB6 unit) were identified in IncR plasmids. In addition to two consecutive copies of qnrB6-qacE-sul1, the other resistance genes encoded on pR50-74 are all related to mobile genetic elements, such as IS1006, IS26, and the class 1 integron. This study provides a clear understanding of the mobility and plasticity of the IncR plasmid backbone sequence and emphasizes the important role of ISCR in the recruitment of multicopy resistance genes.

2021 ◽  
Vol 12 ◽  
Author(s):  
Xueya Zhang ◽  
Qiaoling Li ◽  
Hailong Lin ◽  
Wangxiao Zhou ◽  
Changrui Qian ◽  
...  

Aminoglycosides are important options for treating life-threatening infections. However, high levels of aminoglycoside resistance (HLAR) among Klebsiella pneumoniae isolates have been observed to be increasing frequently. In this study, a total of 292 isolates of the K. pneumoniae complex from a teaching hospital in China were analyzed. Among these isolates, the percentage of HLAR strains was 13.7% (40/292), and 15 aminoglycoside resistance genes were identified among the HLAR strains, with rmtB being the most dominant resistance gene (70%, 28/40). We also described an armA-carrying Klebsiella variicola strain KP2757 that exhibited a high-level resistance to all aminoglycosides tested. Whole-genome sequencing of KP2757 demonstrated that the strain contained one chromosome and three plasmids, with all the aminoglycoside resistance genes (including two copies of armA and six AME genes) being located on a conjugative plasmid, p2757-346, belonging to type IncHI5. Comparative genomic analysis of eight IncHI5 plasmids showed that six of them carried two copies of the intact armA gene in the complete or truncated Tn1548 transposon. To the best of our knowledge, for the first time, we observed that two copies of armA together with six AME genes coexisted on the same plasmid in a strain of K. variicola with HLAR. Comparative genomic analysis of eight armA-carrying IncHI5 plasmids isolated from humans and sediment was performed, suggesting the potential for dissemination of these plasmids among bacteria from different sources. These results demonstrated the necessity of monitoring the prevalence of IncHI5 plasmids to restrict their worldwide dissemination.


2007 ◽  
Vol 51 (8) ◽  
pp. 3004-3007 ◽  
Author(s):  
Ying-Tsong Chen ◽  
Tsai-Ling Lauderdale ◽  
Tsai-Lien Liao ◽  
Yih-Ru Shiau ◽  
Hung-Yu Shu ◽  
...  

ABSTRACT A 269-kilobase conjugative plasmid, pK29, from a Klebsiella pneumoniae strain was sequenced. The plasmid harbors multiple antimicrobial resistance genes, including those encoding CMY-8 AmpC-type and CTX-M-3 extended-spectrum β-lactamases in the common backbone of IncHI2 plasmids. Mechanisms for dissemination of the resistance genes are highlighted in comparative genomic analyses.


2017 ◽  
Vol 61 (7) ◽  
Author(s):  
Weihua Huang ◽  
Guiqing Wang ◽  
Robert Sebra ◽  
Jian Zhuge ◽  
Changhong Yin ◽  
...  

ABSTRACT The extended-spectrum-β-lactamase (ESBL)- and Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacteriaceae represent serious and urgent threats to public health. In a retrospective study of multidrug-resistant K. pneumoniae, we identified three clinical isolates, CN1, CR14, and NY9, carrying both bla CTX-M and bla KPC genes. The complete genomes of these three K. pneumoniae isolates were de novo assembled by using both short- and long-read whole-genome sequencing. In CR14 and NY9, bla CTX-M and bla KPC were carried on two different plasmids. In contrast, CN1 had one copy of bla KPC-2 and three copies of bla CTX-M-15 integrated in the chromosome, for which the bla CTX-M-15 genes were linked to an insertion sequence, ISEcp1, whereas the bla KPC-2 gene was in the context of a Tn4401a transposition unit conjugated with a PsP3-like prophage. Intriguingly, downstream of the Tn4401a-bla KPC-2-prophage genomic island, CN1 also carried a clustered regularly interspaced short palindromic repeat (CRISPR)-cas array with four spacers targeting a variety of K. pneumoniae plasmids harboring antimicrobial resistance genes. Comparative genomic analysis revealed that there were two subtypes of type I-E CRISPR-cas in K. pneumoniae strains and suggested that the evolving CRISPR-cas, with its acquired novel spacer, induced the mobilization of antimicrobial resistance genes from plasmids into the chromosome. The integration and dissemination of multiple copies of bla CTX-M and bla KPC from plasmids to chromosome depicts the complex pandemic scenario of multidrug-resistant K. pneumoniae. Additionally, the implications from this study also raise concerns for the application of a CRISPR-cas strategy against antimicrobial resistance.


2012 ◽  
Vol 57 (1) ◽  
pp. 269-276 ◽  
Author(s):  
Liang Chen ◽  
Kalyan D. Chavda ◽  
Henry S. Fraimow ◽  
José R. Mediavilla ◽  
Roberto G. Melano ◽  
...  

ABSTRACTKlebsiella pneumoniaecarbapenemase (KPC)-producingEnterobacteriaceaehave emerged as major nosocomial pathogens.blaKPC, commonly located on Tn4401, is found in Gram-negative bacterial strains, with the two most common variants,blaKPC-2andblaKPC-3, identified in plasmids with diverse genetic backgrounds. In this study, we examinedblaKPC-4- andblaKPC-5-bearing plasmids recovered from twoK. pneumoniaestrains, which were isolated from a single New Jersey hospital in 2005 and 2006, respectively. IncN plasmid pBK31551 is 84 kb in length and harborsblaKPC-4,blaTEM-1,qnrB2,aac(3)-Ib,aph(3′)-I,qacF,qacEΔ1,sul1, anddfrA14, which confer resistance to β-lactams, quinolones, aminoglycosides, quaternary ammonium compounds, and co-trimoxazole. The conserved regions within pBK31551 are similar to those of other IncN plasmids. Surprisingly, analysis of the Tn4401sequence revealed a large IS110- and Tn6901-carrying element (8.3 kb) inserted into theistAgene, encoding glyoxalase/bleomycin resistance, alcohol dehydrogenase, andS-formylglutathione hydrolase. Plasmid pBK31567 is 47 kb in length and harborsblaKPC-5,dfrA5,qacEΔ1, andsul1. pBK31567 belongs to a novel IncX subgroup (IncX5) and possesses a highly syntenic plasmid backbone like other IncX plasmids; however, sequence similarity at the nucleotide level is divergent. TheblaKPC-5gene is carried on a Tn4401element and differs from the genetic environment ofblaKPC-5described inPseudomonas aeruginosastrain P28 from Puerto Rico. This study underscores the genetic diversity of multidrug-resistant plasmids involved in the spread ofblaKPCgenes and highlights the mobility and plasticity of Tn4401. Comparative genomic analysis provides new insights into the evolution and dissemination of KPC plasmids belonging to different incompatibility groups.


2017 ◽  
Author(s):  
Cameron J. Reid ◽  
Ethan R. Wyrsch ◽  
Piklu Roy Chowdhury ◽  
Tiziana Zingali ◽  
Michael Liu ◽  
...  

AbstractPorcine faecal waste is a serious environmental pollutant. Carriage of antimicrobial resistance and virulence-associated genes (VAGs) and the zoonotic potential of commensalEscherichia colifrom swine is largely unknown. Furthermore, little is known about the role of commensalE. colias contributors to the mobilisation of antimicrobial resistance genes between food animals and the environment. Here, we report whole genome sequence analysis of 141E. colifrom the faeces of healthy pigs. Most strains belonged to phylogroups A and B1 and carried i) a class 1 integron; ii) VAGs linked with extraintestinal infection in humans; iii) antimicrobial resistance genesblaTEM, aphAl, cmlA, strAB, tet(A)A,dfrA12, dfrA5, sul1, sul2, sul3; iv)IS26;and v) heavy metal resistance genes (merA, cusA, terA). Carriage of the sulphonamide resistance genesul3was notable in this study. The 141 strains belonged to 42 multilocus sequence types, but clonal complex 10 featured prominently. Structurally diverse class 1 integrons that were frequently associated with IS26 carried unique genetic features that were also identified in extraintestinal pathogenicE. coli(ExPEC) from humans. This study provides the first detailed genomic analysis and point of reference for commensalE. coliof porcine origin, facilitating tracking of specific lineages and the mobile resistance genes they carry.Conflict of Interest StatementNone to declare.


2016 ◽  
Vol 60 (10) ◽  
pp. 6362-6364 ◽  
Author(s):  
Ding-Qiang Chen ◽  
Ai-Wu Wu ◽  
Ling Yang ◽  
Dan-Hong Su ◽  
Yong-ping Lin ◽  
...  

ABSTRACTKlebsiella pneumoniaestrain KP01 carryingblaGES-5was identified from a patient in Guangzhou, China. High-throughput sequencing assignedblaGES-5to a 28.5-kb nonconjugative plasmid, pGES-GZ. A 13-kb plasmid backbone sequence on pGES-GZ was found to share high sequence identities with plasmids from Gram-negative nonfermenters. A novel class 1 integron carrying a gene cassette array oforf28-orf28-blaGES-5was identified on pGES-GZ, within whichorf28encoded a hypothetical protein possibly correlated to fosfomycin resistance.


Genes ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 1025
Author(s):  
Shaohua Zhao ◽  
Cong Li ◽  
Chih-Hao Hsu ◽  
Gregory H. Tyson ◽  
Errol Strain ◽  
...  

Salmonella is a leading cause of bacterial infections in animals and humans. We sequenced a collection of 450 Salmonella strains from diseased animals to better understand the genetic makeup of their virulence and resistance features. The presence of Salmonella pathogenicity islands (SPIs) varied by serotype. S. Enteritidis carried the most SPIs (n = 15), while S. Mbandaka, S. Cerro, S. Meleagridis, and S. Havana carried the least (n = 10). S. Typhimurium, S. Choleraesuis, S. I 4,5,12:i:-, and S. Enteritidis each contained the spv operon on IncFII or IncFII-IncFIB hybrid plasmids. Two S. IIIa carried a spv operon with spvD deletion on the chromosome. Twelve plasmid types including 24 hybrid plasmids were identified. IncA/C was frequently associated with S. Newport (83%) and S. Agona (100%) from bovine, whereas IncFII (100%), IncFIB (100%), and IncQ1 (94%) were seen in S. Choleraesuis from swine. IncX (100%) was detected in all S. Kentucky from chicken. A total of 60 antimicrobial resistance genes (ARGs), four disinfectant resistances genes (DRGs) and 33 heavy metal resistance genes (HMRGs) were identified. The Salmonella strains from sick animals contained various SPIs, resistance genes and plasmid types based on the serotype and source of the isolates. Such complicated genomic structures shed light on the strain characteristics contributing to the severity of disease and treatment failures in Salmonella infections, including those causing illnesses in animals.


2017 ◽  
Vol 62 (No. 3) ◽  
pp. 169-177 ◽  
Author(s):  
TH Chung ◽  
SW Yi ◽  
BS Kim ◽  
WI Kim ◽  
GW Shin

The present study sought to identify pathogens associated with septicaemia in the Chinese soft-shelled turtle (Pelodiscus sinensis) and to characterise antibiotic resistance in these pathogens. Twenty-three isolates recovered from the livers of diseased soft-shelled turtles were genetically identified as Aeromonas hydrophila (n = 8), A. veronii (n = 3), Citrobacter freundii (n = 4), Morganella morganii (n = 3), Edwardsiella tarda (n = 2), Wohlfahrtiimonas chitiniclastica (n = 1), Chryseobacterium sp. (n = 1), and Comamonas sp. (n = 1). Most isolates (n = 21) were resistant to ampicillin whereas a low percentage of isolates was susceptible to aminoglycosides (amikacin, gentamicin, and tobramycin). PCR assays and sequence analysis revealed the presence of the qnrS2 and bla<sub>TEM</sub> antibiotic resistance genes in all isolates. The bla<sub>DHA-1</sub>, bla<sub>CTX-M-14</sub> and bla<sub>CMY-2</sub> genes were harboured by 17.4% (n = 4), 13.5% (n = 3) and 8.7% (n = 2) of the strains, respectively. One or more tetracycline resistance genes were detected in 60.9% (n = 14) of the isolates. Four isolates (17.4%) harboured single or multiple class 1 integron cassettes. Collectively, a variety of bacterial pathogens were involved in the occurrence of septicaemia in Chinese soft-shelled turtles and most of the isolates had multi-antibiotic resistant phenotypes. To our knowledge, the present report is the first to identify W. chitiniclastica and Comamonas sp. as causes of septicaemia in soft-shelled turtles and the first to identify Aeromonas spp. with bla<sub>CTX-M-14</sub> and bla<sub>DHA-1</sub> resistance genes.


2003 ◽  
Vol 47 (6) ◽  
pp. 2006-2008 ◽  
Author(s):  
Hyunjoo Pai ◽  
Jeong-hum Byeon ◽  
Sunmi Yu ◽  
Bok Kwon Lee ◽  
Shukho Kim

ABSTRACT Six strains of Salmonella enterica serovar Typhi which were resistant to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole, streptomycin, tetracycline, and gentamicin were isolated in Korea. This multidrug resistance was transferred by a conjugative plasmid of about 50 kb. The plasmid harbored a class 1 integron, which included six resistance genes, aacA4b, catB8, aadA1, dfrA1, aac(6′)-IIa, and the novel blaP2, in that order. All of the isolates showed the same-size plasmids and the same ribotyping patterns, which suggests a clonal spread of these multidrug-resistant isolates.


Sign in / Sign up

Export Citation Format

Share Document