scholarly journals Mechanism of Action of Acupotomy in Inhibiting Chondrocyte Apoptosis in Rabbits with KOA through the PI3K/Akt Signaling Pathway

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Xiao-shuang Huang ◽  
Kai Geng ◽  
Shi-yu Luo ◽  
Cun-bin Liu ◽  
Kai-ning Yang ◽  
...  

Objective. We examined the effects of acupotomy on the PI3K/Akt signaling pathway to elucidate the mechanism of action of acupotomy on articular chondrocyte apoptosis among rabbits with knee osteoarthritis (KOA). Methods. New Zealand rabbits were randomly assigned to a healthy control group, placebo group, acupotomy group, and drug group, with 10 rabbits in each group. Changes in chondrocytes were examined by hematoxylin and eosin staining, and articular chondrocyte apoptosis was measured by electron microscopy and immunofluorescence. The mRNA and protein expression levels of PI3K and Akt were measured by real-time quantitative PCR and Western blot. Results. In contrast, less chromatin margination and clear and smooth nuclear envelope boundary were visible in the acupotomy group and drug group. The number of apoptotic chondrocytes in the knee joint of rabbits was significantly higher in the placebo group than that in the acupotomy group and drug group ( P < 0.05 ). The acupotomy group had a nonsignificantly lower number of apoptotic chondrocytes than the drug group ( P > 0.05 ). Furthermore, the mRNA and protein expression levels of PI3K and Akt were significantly higher in the acupotomy group and drug group than those in the placebo group ( P < 0.05 ) and were closer to normal levels in the acupotomy group than those in the drug group ( P < 0.05 ). PI3K and Akt expression levels were negatively correlated with chondrocyte apoptosis in the knee joint of rabbits in all groups. Conclusion. Inhibiting chondrocyte apoptosis in the knee joint of KOA rabbits by upregulating the PI3K/Akt signaling pathway may be a possible mechanism of acupotomy in treating KOA.

2020 ◽  
Vol 10 (12) ◽  
pp. 1877-1883
Author(s):  
Jun Wu ◽  
Fenfen Zhao ◽  
Feng Tian ◽  
Feng Ma ◽  
Tao Guan

Autophagy and apoptosis of chondrocytes participate in spondyloarthritis (SpA). miR-34 involves in various diseases. However, miR-34’s role in autophagy and apoptosis of spine chondrocytes remains unclear. SpA patients and normal bone and articular cartilage tissues were collected, and miR-34 level was detected by Real-time PCR. The chondrocytes of SpA patients were isolated and divided into control group, miR-34 siRNA group and miR-34 group followed by analysis of Caspase 3 activity, cell proliferation by MTT assay, expression of Bax, Bcl-2, ATG5 and Beclin1 by Real time PCR, mTOR/PI3K/AKT signaling pathway protein expression by western blot, as well as TNF-α and IL-6 secretion by ELISA. miR-34 was significantly upregulated in SpA patients compared to normal (P <0.05). miR-34 siRNA transfection into SpA chondrocytes significantly down-regulated miR-34 expression, promoted cell proliferation, decreased Caspase 3 activity and Bax expression, increased Bcl-2, ATG5 and Beclin1 expression, decreased TNF-α and IL- 6 secretion as well as increased pmTOR and pAKT expression (P <0.05). miR-34 mimics was transfected into SpA chondrocytes, which up-regulated miR-34 expression and significantly reversed the above changes (P <0.05). miR-34 is upregulated in SpA patients. Down-regulation of miR-34 inhibits articular chondrocyte apoptosis and promotes autophagy by down-regulatingmTOR/PI3K/AKT signaling pathway, thereby promoting articular chondrocyte proliferation and inhibiting joint inflammation.


2020 ◽  
Vol 20 (5) ◽  
pp. 396-406 ◽  
Author(s):  
Liangtong Li ◽  
Xiangzi Li ◽  
Zhe Zhang ◽  
Li Liu ◽  
Tongtong Liu ◽  
...  

Background: The effects of hydrogen-rich water on PI3K/AKT-mediated apoptosis were studied in rats subjected to myocardial ischemia-reperfusion injury (MIRI). Methdos: Sixty rats were divided randomly into a hydrogen-rich water group and a control group. The hearts were removed and fixed in a Langendorff device. Hearts from the control group were perfused with K-R solution, and hearts from the hydrogen-rich water group was perfused with K-R solution + hydrogen-rich water. The two treatment groups were then divided randomly into pre-ischemic period, ischemic period and reperfusion period groups(10 rats per group), which were subjected to reverse perfusion for 10 min, normal treatment for 20 min, and reperfusion for 20 min, respectively. The mRNA and protein expression levels of PI3K, AKT, p-AKT, FoxO1, Bim and Caspase-3 in each group were detected by RT-qPCR, immunohistochemistry (IHC) and Western blotting. Caspase-3 activity was detected by spectrophotometry. Results: Among the hydrogen-rich water group, the PI3K/AKT signaling pathway was significantly activated, and FoxO1, Bim, and Caspase-3 mRNA and protein levels were significantly decreased in ischemia-reperfusion subgroup compared with the preischemic and ischemic subgroups. In the ischemia-reperfusion hydrogen-rich water group, PI3K, AKT and p-AKT mRNA and protein expression levels were increased while the FoxO1, Bim and Caspase-3 expression levels were significantly decreased compared with those in the corresponding control group (p<0.05). Conclusion: Hydrogen-rich water can activate the PI3K/AKT signaling pathway, alleviate ischemia-reperfusion injury in isolated rat hearts, and inhibit cardiomyocyte apoptosis.


2020 ◽  
Vol 11 (10) ◽  
Author(s):  
Ying Gao ◽  
Dan-Lei Chen ◽  
Mi Zhou ◽  
Zhou-san Zheng ◽  
Mei-Fang He ◽  
...  

Abstract Although cisplatin (cDDP), is a first-line chemotherapy drug for esophageal cancer, it still has the potential to develop drug resistance and side effects. There is increasing evidence that cordycepin can work synergistically with other chemotherapy drugs. Therefore, we investigated whether combination therapy of cordycepin and cDDP may enhance the therapeutic effect of cDDP. We performed a series of functional tests to study the effect of medical treatment on esophageal cancer cells. We then used GO analysis to examine the pathways affected by treatment with cordycepin and cDDP. Next, we observed changes in the abundance of the selected pathway proteins. The in vivo animal model supported the results of the in vitro experiments. Co-treatment with cordycepin and cDDP inhibited cell growth, migration, and metastasis, as well as induced apoptosis. Cordycepin was found to effectively enhance activation of AMPK and inhibited activity of AKT. In all treatment groups, the expression levels of p-PI3K, p-Akt, p-p70S6K, Caspase-3, and Bcl-2 were significantly reduced, while the expression levels of p-AMPK, cleaved Caspase-3, and Bax increased, and the total levels of Akt, PI3K, and p70S6K levels remained unchanged. Overall, cordycepin was found to enhance the chemical sensitivity of esophageal cancer cells to cisplatin by inducing AMPK activation and inhibiting the AKT signaling pathway. Combination therapy of cordycepin and cisplatin represent a novel potential treatment of esophageal cancer.


2017 ◽  
Vol 43 (5) ◽  
pp. 2117-2132 ◽  
Author(s):  
Hai-Bo Li ◽  
Qi-Sheng You ◽  
Li-Xin Xu ◽  
Li-Xin Sun ◽  
Aman Shah Abdul Majid ◽  
...  

Background/Aims: The aim of the present study is to investigate the effect of long non-coding RNA-MALAT1 (LncRNA-MALAT1) on retinal ganglion cell (RGC) apoptosis mediated by the PI3K/Akt signaling pathway in rats with glaucoma. Methods: RGCs were isolated and cultured, and monoclonal antibodies (anti-rat Thy-1, Brn3a and RBPMS) were examined by immunocytochemistry. An overexpression vector MALAT1-RNA activation (RNAa), gene knockout vector MALAT1-RNA interference (RNAi), and control vector MALAT1-negative control (NC) were constructed. A chronic high intraocular pressure (IOP) rat model of glaucoma was established by episcleral vein cauterization. The RGCs were divided into the RGC control, RGC pressure, RGC pressure + MALAT1-NC, RGC pressure + MALAT1-RNAi and RGC pressure + MALAT1-RNAa groups. Sixty Sprague-Dawley (SD) rats were randomly divided into the normal, high IOP, high IOP + MALAT1-NC, high IOP + MALAT1-RNAa and high IOP + MALAT1-RNAi groups. qRT-PCR and western blotting were used to detect the expression levels of LncRNA-MALAT1 and PI3K/Akt. Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) and flow cytometry were used to detect RGC apoptosis. Results: Immunocytochemistry revealed that the cultured RGCs reached 90% purity. Compared with the RGC pressure + MALAT1-NC group, the RGC pressure + MALAT1-RNAa group exhibited elevated expression levels of MALAT1, lower total protein levels of PI3K and Akt and decreased RGC apoptosis, while these expression levels were reversed in the RGC pressure + MALAT1-RNAi group. RGC numbers and PI3K/Akt expression levels in the high IOP model groups were lower than those in the normal group. In the high IOP + MALAT1-RNAa group, the mRNA and protein expression levels of PI3K/Akt were reduced but higher than those in the other three high IOP model groups. Additionally, RGC numbers in the high IOP + MALAT1-RNAa group were lower than those in the normal group but higher than those in the other three high IOP model groups. Conclusion: Our study provides evidence that LncRNA-MALAT1 could inhibit RGC apoptosis in glaucoma through activation of the PI3K/Akt signaling pathway.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yuefeng Zhang ◽  
Fei Yu ◽  
Jingyou Hao ◽  
Eliphaz Nsabimana ◽  
Yanru Wei ◽  
...  

Stress diarrhea is a major challenge for weaned piglets and restricts pig production efficiency and incurs massive economic losses. A traditional Chinese medicine prescription (QJC) composed of Astragalus propinquus Schischkin (HQ), Zingiber officinale Roscoe (SJ), and Plantago asiatica L. (CQC) has been developed by our laboratory and shows marked anti-stress diarrhea effect. However, the active compounds, potential targets, and mechanism of this effect remain unclear and warrant further investigation. In our study, we verified the bioactive compounds of QJC and relevant mechanisms underlying the anti-stress diarrhea effect through network pharmacology and in vivo experimental studies. After establishing a successful stress-induced diarrhea model, histomorphology of intestinal mucosa was studied, and Quantitative real-time PCR (RT-qPCR) probe was used for the phosphoinositide 3-kinase (PI3K)–Akt signaling pathway to verify the therapeutic effect of QJC on diarrhea. First, using the network pharmacology approach, we identified 35 active components and 130 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in QJC. From among these, we speculated that quercetin, luteolin, kaempferol, scutellarein, and stigmasterol were the main bioactive compounds and assumed that the anti-diarrhea effect of QJC was related to the PI3K–Akt signaling pathway. The RT-qPCR indicated that QJC and its bioactive components increased the expression levels of PI3K and Akt, inhibited the expression of phosphatase and tensin homolog (PTEN), and activated the PI3K–Akt signaling pathway to relieve stress-induced diarrhea. Furthermore, we found that QJC alleviated the pathological condition of small intestine tissue and improved the integrity of the intestinal barrier. Taken together, our study showed that the traditional Chinese medicine QJC, quercetin, luteolin, kaempferol, scutellarein, and stigmasterol alleviated the pathological condition of small intestine tissue and relieved stress-induced diarrhea by increasing the expression levels of PI3K and Akt and inhibiting the expression levels of PTEN.


2020 ◽  
Vol 10 (4) ◽  
pp. 477-481
Author(s):  
Hong Bing Xiao ◽  
Wei Hu ◽  
Jun Gu ◽  
Dandan Li

Objective: To assess promethazine's effect on myocardial cells in rats with myocardial ischemiareperfusion injury (MIRI). Methods: The rat MIRI model was established and treated as the ischemia group. MIRI rats were treated with promethazine and included as the drug group. Rats only undergoing thoracotomy were enrolled as the control group. The physiological function of heart was assessed using the ultrasound cardiotachograph, and the apoptosis and proliferation of myocardial cells were detected using TUNEL assay and Ki67 staining, respectively. Moreover, the expressions of Caspase-3, Bcl-2, PI3K, GSK-3, PDK-1 and PKB were determined via Western blotting and qPCR. Results: There were significant differences in cardiac function indexes [left ventricular enddiastolic diameter (LVEDd), left ventricular end systolic diameter (LVESd), ejection fraction (EF) and fractional shortening (FS)] among the three groups (p= 0 002, 0.004, 0.025 and 0.012), and ischemia group had the highest LVEDd [(8.73± 0.31) mm] and LVESd [(7.98± 0.37) mm] and lowest EF [(42± 3.8)%] and FS [(40.3± 2.8)%]. The number of apoptotic myocardial cells was significant higher in ischemia group than control ( p< 0 05), while it was significantly declined after treatment with promethazine ( p< 0 05). Caspase-3 was significantly upregulated and Bcl-2 was downregulated in ischemia group which were all significantly reversed in drug group. Besides, Ki67 level was significantly reduced in ischemia group compared to control and higher in drug group than ischemia group, indicating that drug treatment increased cell proliferation ability. The levels of PI3K, GSK-3 and PKB in myocardial tissues were significantly declined in ischemia group and elevated after the treatment with promethazine without difference of PDK-1 level in myocardial tissues among the three groups. Conclusion: Promethazine inhibits apoptosis and promotes proliferation of myocardial cells in MIRI rats through PI3K/Akt signaling pathway.


Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2260
Author(s):  
Xiangwei Tang ◽  
Yao Chen ◽  
Hui Luo ◽  
Qiao Bian ◽  
Bo Weng ◽  
...  

The quantity of Sertoli cells in the adult testis decides the daily gamete formation, and accumulating evidence indicates that epigenetic factors regulate the proliferation of Sertoli cells. Research on the function and regulatory mechanism of microRNAs (miRNAs) in Sertoli cells has not been comprehensive yet, especially on domestic animals. In this article, we report that miR-126 controls the proliferation and apoptosis of immature porcine Sertoli cells based on previous studies. Our results confirmed that miR-126 elevation promotes cell cycle progression, cell proliferation and represses cell apoptosis; on the contrary, the inhibitory effects of miR-126 result in the opposite. The phosphoinositide-3-kinase regulatory subunit 2 (PIK3R2) gene, a member of the PI3K family, was verified as a direct target of miR-126 using the dual-luciferase reporter analysis. miR-126 negatively regulated the mRNA and protein expression level of PIK3R2 in immature porcine Sertoli cells. siRNA-induced PIK3R2 inhibition caused similar effects as miR-126 overexpression and eliminated the influences of miR-126 knockdown in immature porcine Sertoli cells. In addition, both miR-126 overexpression and PIK3R2 inhibition elevated the phosphorylation of PI3K and AKT, whereas the miR-126 knockdown demonstrated the contrary result. In short, miR-126 controls the proliferation and apoptosis of immature porcine Sertoli cells by targeting the PIK3R2 gene through the PI3K/AKT signaling pathway. The research supplies a theoretical and practical foundation for exploring the functional parts of miR-126 in swine sperm by defining the destiny of immature Sertoli cells.


Author(s):  
Tuba Gokdogan Edgunlu ◽  
Cigir Biray Avci ◽  
Neslihan Pınar Ozates ◽  
Bakiye Goker Bagca ◽  
Sevim Karakas Celik ◽  
...  

Aim: It was aimed to determine the cytotoxic and apoptotic effect of propofol on glioma cells. Background: Propofol [2,6-diisopropylphenol] is a commonly used intravenous anesthetic. Propofol is known to have a mechanism of action on the PI3K-AKT pathway. Objective: This study aimed to evaluate the effect of propofol on the proliferation and apoptosis of human glioma cells, as well as to investigate changes in expression levels of the PI3K-AKT signaling pathway genes. Results: We have shown that propofol-induced apoptosis in U-87 MG cells by 17.1-fold compared to untreated control. Furthermore, significant differences were found in the expression levels of the PI3K-AKT signaling pathway genes. Conclusion: As a result of our study, it was found that propofol caused differences in expression levels of PI3K-AKT signaling pathway genes, and it was suggested that these differences might be related to apoptosis induction.


2019 ◽  
Vol 39 (7) ◽  
Author(s):  
Debin Xu ◽  
Jichun Yu ◽  
Shimin Zhuang ◽  
Shuyong Zhang ◽  
Zhengdong Hong ◽  
...  

Abstract Long non-coding RNAs (lncRNAs) have been widely reported that involved in human cancers, including papillary thyroid carcinoma (PTC). The present study aims to investigate the biological role of LINC00982 in PTC. The mRNA expression of LINC00982 in human PTC tissues was detected using qPCR. Moreover, Kaplan–Meier method was performed to analyze the internal relevance between LINC00982 expression and overall survival (OS) rate of patients with PTC. In addition, gain- and loss-of-functions assays were performed to detect the effects of LINC00982 on the cell proliferation and migration in PTC cells. Furthermore, western blot assay was used to measure the alteration expression levels of apoptosis relative proteins and the relative protein involved phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway. Finally, a xenograft model was used to analyze the antitumor role of LINC00982 in vivo. Here, we found that LINC00982 was decreased in human PTC tissues. Patients with decreased LINC00982 expression levels had a reduced OS (P=0.0019) compared with those with high LINC00982 expression levels. Overexpression of LINC00982 suppressed the proliferation and migration of BHT101 and B-CPAP cells and promoted cell apoptosis. Knockdown of LINC00982 promoted the proliferation and migration of BHT101 and B-CPAP cells and induced cell apoptosis. Moreover, in vivo assay showed that overexpression of LINC00982 could suppress the growth of PTC. Finally, LINC00982 could regulate the activity of PI3K/AKT signaling pathway in vitro and in vivo. Taken together, our findings demonstrated that overexpression of LINC00982 could suppress cell proliferation and induce cell apoptosis by regulating PI3K/AKT signaling pathway in PTC.


Sign in / Sign up

Export Citation Format

Share Document