scholarly journals Simulation Study of Autonomous Vehicles’ Effect on Traffic Flow Characteristics including Autonomous Buses

2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Tanveer Muhammad ◽  
Faizan Ahmad Kashmiri ◽  
Hassan Naeem ◽  
Xin Qi ◽  
Hsu Chia-Chun ◽  
...  

Autonomous vehicles are expected to revolutionize the transportation industry. The goal of this research is to study the heterogeneity in traffic flow dynamics by comparing different penetration rates of four different types of vehicles: autonomous cars (AC), autonomous buses (AB), manual cars (MC), and manual buses (MB). For the purpose of this research, a modified cellular automata (CA) model is developed in order to analyze the effect of heterogeneous vehicles (manual and autonomous). Previously, studies have focused on manual and autonomous cars, but we believe a gap in perception and analysis of mixed traffic still exists, as inclusion of other modes of autonomous vehicle research is very limited. Therefore, we have explicitly examined the effect of the AB on overall traffic flow. Moreover, two types of lane changing behavior (aggressive lane changing and polite lane changing) were also integrated into the model. Multiple scenarios through different compositions of vehicles were simulated. As per the results, if AB is employed concurrently with AC, there will be a significant improvement in traffic flow and road capacity, as equally more passengers can be accommodated in AB as AC is also anticipated to be used in carpooling. Secondly, when the vehicles change the lanes aggressively, there is a substantial growth in the flow rate and capacity of the network. Polite lane change does not significantly affect the flow rate.

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3425
Author(s):  
Huanping Li ◽  
Jian Wang ◽  
Guopeng Bai ◽  
Xiaowei Hu

In order to explore the changes that autonomous vehicles would bring to the current traffic system, we analyze the car-following behavior of different traffic scenarios based on an anti-collision theory and establish a traffic flow model with an arbitrary proportion (p) of autonomous vehicles. Using calculus and difference methods, a speed transformation model is established which could make the autonomous/human-driven vehicles maintain synchronized speed changes. Based on multi-hydrodynamic theory, a mixed traffic flow model capable of numerical calculation is established to predict the changes in traffic flow under different proportions of autonomous vehicles, then obtain the redistribution characteristics of traffic flow. Results show that the reaction time of autonomous vehicles has a decisive influence on traffic capacity; the q-k curve for mixed human/autonomous traffic remains in the region between the q-k curves for 100% human and 100% autonomous traffic; the participation of autonomous vehicles won’t bring essential changes to road traffic parameters; the speed-following transformation model minimizes the safety distance and provides a reference for the bottom program design of autonomous vehicles. In general, the research could not only optimize the stability of transportation system operation but also save road resources.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1523
Author(s):  
Nikita Smirnov ◽  
Yuzhou Liu ◽  
Aso Validi ◽  
Walter Morales-Alvarez ◽  
Cristina Olaverri-Monreal

Autonomous vehicles are expected to display human-like behavior, at least to the extent that their decisions can be intuitively understood by other road users. If this is not the case, the coexistence of manual and autonomous vehicles in a mixed environment might affect road user interactions negatively and might jeopardize road safety. To this end, it is highly important to design algorithms that are capable of analyzing human decision-making processes and of reproducing them. In this context, lane-change maneuvers have been studied extensively. However, not all potential scenarios have been considered, since most works have focused on highway rather than urban scenarios. We contribute to the field of research by investigating a particular urban traffic scenario in which an autonomous vehicle needs to determine the level of cooperation of the vehicles in the adjacent lane in order to proceed with a lane change. To this end, we present a game theory-based decision-making model for lane changing in congested urban intersections. The model takes as input driving-related parameters related to vehicles in the intersection before they come to a complete stop. We validated the model by relying on the Co-AutoSim simulator. We compared the prediction model outcomes with actual participant decisions, i.e., whether they allowed the autonomous vehicle to drive in front of them. The results are promising, with the prediction accuracy being 100% in all of the cases in which the participants allowed the lane change and 83.3% in the other cases. The false predictions were due to delays in resuming driving after the traffic light turned green.


Author(s):  
Åsa Enberg ◽  
Matti Pursula

The traffic-flow characteristics on an experimental, 20-km-long three-lane highway section in Finland were studied. The sections of highway that have a separate passing lane consist of three lanes. The central lane is assigned alternately to each direction as a passing lane with a length of 1.05 to 1.70 km. The lengths of the no-overtaking zones between successive passing lanes are 1.5 to 4.0 km. The traffic-flow characteristics on the three-lane highway have been observed by comprehensive before-and-after field studies and complementary simulations. Because it was possible to use passing lanes, the number of overtakings on the three-lane highway was remarkably higher than on the former two-lane highway. The overall average travel speeds were slightly higher, and the speed decreased a little more slowly with increasing flow on the three-lane compared with the two-lane highway. Overall platooning and mean platoon lengths decreased as a result of platoon dispersal on the passing lanes. The speeds used in the passing lanes were clearly higher than in the basic lanes. According to the simulation results, the optimum length for a single passing lane was between 0.5 and 2.5 km depending on flow rate and measure of effectiveness. For the actual three-lane highway conditions, passing lanes 1.0 to 1.5 km long seemed to bring the most benefits.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5778
Author(s):  
Agnieszka Dudziak ◽  
Monika Stoma ◽  
Andrzej Kuranc ◽  
Jacek Caban

New technologies reaching out for meeting the needs of an aging population in developed countries have given rise to the development and gradual implementation of the concept of an autonomous vehicle (AV) and have even made it a necessity and an important business paradigm. However, in parallel, there is a discussion about consumer preferences and the willingness to pay for new car technologies and intelligent vehicle options. The main aim of the study was to analyze the impact of selected factors on the perception of the future of autonomous cars by respondents from the area of Southeastern Poland in terms of a comparison with traditional cars, with particular emphasis on the advantages and disadvantages of this concept. The research presented in this study was conducted in 2019 among a group of 579 respondents. Data analysis made it possible to identify potential advantages and disadvantages of the concept of introducing autonomous cars. A positive result of the survey is that 68% of respondents stated that AV will be gradually introduced to our market, which confirms the high acceptance of this technology by Poles. The obtained research results may be valuable information for governmental and local authorities, but also for car manufacturers and their future users. It is an important issue in the area of shaping the strategy of actions concerning further directions of development on the automotive market.


Author(s):  
Jacob Terry ◽  
Chris Bachmann

There is some understanding that autonomous vehicles will disrupt public sector policies and the existing transportation industry, but this disruption is often loosely defined and tends to ignore how it would affect governments financially. The primary objective of this paper is to quantify the short-term impact of introducing autonomous vehicles on government finances. The analysis focuses on eight Canadian governments, encompassing four government tiers. Public discourse and academic literature are used to generate nine predicted changes (forecast variables) in future adoption scenarios. Using the predicted rate of autonomous vehicle adoption, the remaining variables are converted into financial changes by combining them with government financial records, infrastructure inventory datasets, and project cost estimates. The results suggest that, while revenue impacts are fairly minimal, and mostly impact Canadian provinces, the cost of implementing the expected vehicle-to-infrastructure (V2I) communication upgrades could be expensive for governments with smaller populations, especially municipalities. The revenue analysis indicates the biggest shift is likely to be a loss in gas tax, which affects federal and provincial revenues, yet this share is relatively small compared with the size of these governments’ budgets. The expense analysis suggests that, although provinces have extensive road networks, the cost of upgrading all of their highways may not be unreasonable compared with their yearly revenue intake. On the other hand, municipalities would require substantial new funds to be able to make the same upgrades.


2008 ◽  
Vol 19 (11) ◽  
pp. 1705-1715 ◽  
Author(s):  
WEI-WEI ZHANG ◽  
RUI JIANG ◽  
YAO-MING YUAN ◽  
QING-SONG WU

This paper investigates traffic dynamics of two-lane mixed traffic flow system composed of cars and buses, which are characterized by different lengths and different maximum velocities. Four lane changing regulations are studied, which reveals effect of lane changing ban, symmetric and asymmetric lane changing rules on traffic flow characteristics (flow rate, carry capability, lane changing frequency, and lane usage). We expect that our results could be useful for traffic management.


Subject China's policies to develop the autonomous vehicle sector. Significance Chinese policymakers believe the size of their domestic market will give China’s vehicle makers the scale to lead the world in autonomous cars. The National Development and Reform Commission expects that 50% of new vehicles sold in China by 2020 will be ‘smart cars’, that is, with partial or fully autonomous functions. Impacts Policies do not explicitly favour fleet vehicles over private cars, but fleet vehicles are likely to lead adoption. Self-driving fleet services are a future way to provide mobility for a growing elderly population. Regardless of international concerns about protectionism, all levels of government will use preferential procurement to support the sector. China's civilian autonomous vehicle sector will benefit from dual-use technology developed by the military.


2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
Yao Xiao ◽  
Jing Shi

This paper aimed to analyze the influence of drivers’ behavior of phone use while driving on traffic flow, including both traffic efficiency and traffic safety. An improved cellular automaton model was proposed to simulate traffic flow with distracted drivers based on the Nagel-Schreckenberg model. The driving characters of drivers using a phone were first discussed and a value representing the probability to use a phone while driving was put into the CA model. Simulation results showed that traffic flow rate was significantly reduced if some drivers used a phone compared to no phone use. The flow rate and velocity decreased as the proportion of drivers using a phone increased. While, under low density, the risk of traffic decreased first and then increased as the distracted drivers increased, the distracted behavior of drivers, like using a phone, could reduce the flow rate by 5 percent according to the simulation.


2019 ◽  
Vol 7 (2) ◽  
pp. 72-87 ◽  
Author(s):  
Serkan Ayvaz ◽  
Salih Cemil Cetin

Purpose The purpose of this paper is to develop a model for autonomous cars to establish trusted parties by combining distributed ledgers and self-driving cars in the traffic to provide single version of the truth and thus build public trust. Design/methodology/approach The model, which the authors call Witness of Things, is based on keeping decision logs of autonomous vehicles in distributed ledgers through the use of vehicular networks and vehicle-to-vehicle/vehicle-to-infrastructure (or vice versa) communications. The model provides a single version of the truth and thus helps enable the autonomous vehicle industry, related organizations and governmental institutions to discover the true causes of road accidents and their consequences in investigations. Findings In this paper, the authors explored one of the potential effects of blockchain protocol on autonomous vehicles. The framework provides a solution for operating autonomous cars in an untrusted environment without needing a central authority. The model can also be generalized and applied to other intelligent unmanned systems. Originality/value This study proposes a blockchain protocol-based record-keeping model for autonomous cars to establish trusted parties in the traffic and protect single version of the truth.


Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1079 ◽  
Author(s):  
Fen Lin ◽  
Kaizheng Wang ◽  
Youqun Zhao ◽  
Shaobo Wang

An integrated longitudinal-lateral control method is proposed for autonomous vehicle trajectory tracking and dynamic collision avoidance. A method of obstacle trajectory prediction is proposed, in which the trajectory of the obstacle is predicted and the dynamic solution of the reference trajectory is realized. Aiming at the lane changing scene of autonomous vehicles driving in the same direction and adjacent lanes, a trajectory re-planning motion controller with the penalty function is designed. The reference trajectory parameterized output of local reprogramming is realized by using the method of curve fitting. In the framework of integrated control, Fuzzy adaptive (proportional-integral) PI controller is proposed for longitudinal velocity tracking. The selection and control of controller and velocity are realized by logical threshold method; A model predictive control (MPC) with vehicle-to-vehicle (V2V) information interaction modular and the driver characteristics is proposed for direction control. According to the control target, the objective function and constraints of the controller are designed. The proposed method’s performance in different scenarios is verified by simulation. The results show that the autonomous vehicles can avoid collision and have good stability.


Sign in / Sign up

Export Citation Format

Share Document