scholarly journals Numerical Investigation of the Pressure Drop Characteristics of Isothermal Ice Slurry Flow under Variable Ice Particle Diameter

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Shehnaz Akhtar ◽  
Taqi Ahmad Cheema ◽  
Haider Ali ◽  
Moon Kyu Kwak ◽  
Cheol Woo Park

Ice slurry is an advanced secondary refrigerant that has been attracting considerable attention for the past decade due to the growing concerns regarding energy shortage and environmental protection. To stimulate the potential applications of ice slurry, the corresponding pressure drop of this refrigerant must be comprehensively investigated. The flow of ice slurry is a complex phenomenon that is affected by various parameters, including flow velocity, ice particle size, and ice mass fraction. To predict the pressure drop of ice slurry flow in pipes, a mixture computational fluid dynamic model was adopted to simulate a two-phase flow without considering ice melting. The numerical calculations were performed on a wide range of six ice particle sizes (0.1, 0.3, 0.5, 0.75, 1, and 1.2 mm) and ice mass fraction ranging within 5%–20% in the laminar range of ice slurry flow. The numerical model was validated using experimental data. Results showed that the ice volumetric loading and flow velocity have a direct effect on pressure drop; it increases with the increase in volumetric concentration and flow velocity. The findings also confirmed that for constant ice mass fraction and flow velocity, the pressure drop is directly and inversely related to the particle and pipe diameters, respectively. Moreover, the rise in pressure drop is more significant for large ice particle diameter in comparison to smaller size ice particles at high values of ice concentration and flow velocity.

Processes ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 898 ◽  
Author(s):  
Shehnaz Akhtar ◽  
Haider Ali ◽  
Cheol Woo Park

Ice slurry is a potential secondary refrigerant for commercial refrigeration systems because of its remarkable thermal properties. It is necessary to optimize the heat transfer process of ice slurry to reduce the energy consumption of the refrigeration system. Thus, this study investigates the heat transfer performance of single-phase (aqueous solution) and two-phase (ice slurry) refrigerants in a straight horizontal tube. The numerical simulations for ice slurry were performed with ice mass fraction ranging from 5% to 20%. The effects of flow velocity and ice concentration on the heat transfer coefficient were examined. The results showed that heat transfer coefficient of ice slurry is considerably higher than those of single-phase flow, particularly at high flow velocity and ice content, where increase in heat transfer with a factor of two was observed. The present results confirmed that ice slurry heat transfer ability is considerably affected by flow velocity and ice concentration in laminar range. Moreover, the second part of this paper reports on the credibility three distinct two-phase Eulerian–Eulerian models (volume of fluid (VOF), mixture, and Eulerian) for the experimental conditions reported in the literature. All two-phase models accurately predict the thermal field at low ice mass fraction but underestimate that at high ice mass fractions. Regardless of the thermal discrepancies, the Eulerian–Eulerian models provide quite reasonable estimation of pressure drop with reference to experimental data. The numerical predictions from the VOF model are more accordant with the experimental results and the maximum percentage error is limited to ~20% and ~13% for thermal and pressure drop predictions, respectively.


Author(s):  
Shofique Uddin Ahmed ◽  
Rajesh Arora ◽  
Om Parkash

Over the decades conveying solid particles through pipelines is a prevalent usage for many industries like food industries, pharmaceutical, oil and gas-solid handling, power generations etc. In the present study, slurry flow through 54.9 mm diameter and 4 m long horizontal pipe with solid particle diameter 0.125 mm and specific gravity 2.47 has been numerically analysed using a granular version of Eulerian two-phase model and RNG K-  model. The solid particles are considered as mono-dispersed in the Eulerian model. These models are available in computational fluid dynamics (CFD) fluent software package. Non-uniform structured three-dimensional mesh with a refinement near wall boundary region has been selected for discretising the flow domain, and governing equations are solved using control volume finite difference method. Simulations are conducted at velocity varying from 1 m/s to 5 m/s and efflux concentration varying from 0.1 to 0.5 by volume. Different slurry flow parameters such as solid concentration distribution, velocity distribution, pressure drop etc. have been analysed from the simulated results. The simulated results of pressure drop are correlated with the experimental data available in previous literature and are found to be in excellent compliance with the experimental data.


2017 ◽  
Vol 23 (3) ◽  
pp. 311-320 ◽  
Author(s):  
R.A.F. Oliveira ◽  
G.H. Justi ◽  
G.C. Lopes

In a cyclone design, pressure drop and collection efficiency are two important performance parameters to estimate its implementation viability. The optimum design provides higher efficiencies and lower pressure drops. In this paper, a grid independence study was performed to determine the most appropriate mesh to simulate the two-phase flow in a Stairmand cyclone. Computational fluid dynamic (CFD) tools were used to simulate the flow in an Eulerian-Lagrangian approach. Two different mesh structure, one with wall-refinement and the other with regular elements, and several mesh sizes were tested. The grid convergence index (GCI) method was applied to evaluate the result independence. The CFD model results were compared with empirical correlations from bibliography, showing good agreement. The wall-refined mesh with 287 thousand elements obtained errors of 9.8% for collection efficiency and 14.2% for pressure drop, while the same mesh, with regular elements, obtained errors of 8.7% for collection efficiency and 0.01% for pressure drop.


2010 ◽  
Vol 31 (3) ◽  
pp. 73-86
Author(s):  
Łukasz Mika

Loss coefficients of ice slurry in sudden pipe contractionsIn this paper, flow systems which are commonly used in fittings elements such as contractions in ice slurry pipelines, are experimentally investigated. In the study reported in this paper, the consideration was given to the specific features of the ice slurry flow in which the flow behaviour depends mainly on the volume fraction of solid particles. The results of the experimental studies on the flow resistance, presented herein, enabled to determine the loss coefficient during the ice slurry flow through the sudden pipe contraction. The mass fraction of solid particles in the slurry ranged from 5 to 30%. The experimental studies were conducted on a few variants of the most common contractions of copper pipes: 28/22 mm, 28/18 mm, 28/15 mm, 22/18 mm, 22/15 mm and 18/15 mm. The recommended (with respect to minimal flow resistance) range of the Reynolds number (Re about 3000-4000) for the ice slurry flow through sudden contractions was presented in this paper.


Author(s):  
Christian Weinmu¨ller ◽  
Dimos Poulikakos

Microfluidics has experienced a significant increase in research activities in recent years with a wide range of applications emerging, such as micro heat exchangers, energy conversion devices, microreactors, lab-on-chip devices and micro total chemical analysis systems (μTAS). Efforts to enhance or extend the performance of single phase microfluidic devices are met by two-phase flow systems [1, 2]. Essential for the design and control of microfluidic systems is the understanding of the fluid/hydrodynamic behavior, especially pressure drop correlations. These are well established for single phase flow, however, analytical correlations for two-phase flow only reflect experimentally obtained values within an accuracy of ± 50% [3, 4]. The present study illustrates the effect of two-phase flow regimes on the pressure drop. Experimental measurement data is put into relation of calculated values based on established correlations of Lockhart-Martinelli with Chisholm modifications for macroscopic flows [5, 6] and Mishima-Hibiki modifications for microscale flows [7]. Further, the experimental pressure drop data is superimposed onto two-phase flow maps to identify apparent correlations of pressure drop abnormalities and flow regimes. The experiments were conducted in a square microchannel with a width of 200 μm. Optical access is guaranteed by an anodically bonded glass plate on a MEMS fabricated silicon chip. Superficial velocities range from 0.01 m/s to 1 m/s for the gas flow and from 0.0001 m/s to 1 m/s for the liquid flow with water as liquid feed and CO2 as gas. The analysis of the flow regimes was performed by imaging the distinct flow regimes by laser induced fluorescence microscopy, employing Rhodamine B as the photosensitive dye. The pressure drop was synchronically recorded with a 200 mbar, 2.5 bar and 25 bar differential pressure transmitter and the data was exported via a LabView based software environment, see Figure 1. Figure 2 illustrates the experimentally obtained pressure drop in comparison to the calculated values based on the Lockhard-Martinelli correlation with the Chisholm modification and the Mishima-Hibiki modification. For both cases the predications underestimate the two-phase pressure drop by more than 50%. Nevertheless, the regression of the experimental data has an offset of linear nature. Two-phase flow is assigned to flow regime maps of bubbly, wedging, slug or annular flow defined by superficial gas and liquid velocities. In Figure 3 the pressure drop is plotted as a surface over the corresponding flow regime map. Transition lines indicate a change of flow regimes enclosing an area of an anticline in the pressure data. In the direct comparison between the calculated and the measured values, the two surfaces show a distinct deviation. Especially, the anticline of the experimental data is not explained by the analytical correlations. Figure 4 depicts the findings of Figure 3 at a constant superficial velocity of 0.0232 m/s. The dominant influence of the flow regimes on the pressure drop becomes apparent, especially in the wedging flow regime. The evident deviation of two-phase flow correlations for the pressure drop is based on omitting the influence of the flow regimes. In conclusion, the study reveals a strong divergence of pressure drop measurements in microscale two-phase flow from established correlations of Lockhart-Martinelli and recognized modifications. In reference to [8, 9], an analytical model incorporating the flow regimes and, hence, predicting the precise pressure drop would be of great benefit for hydrodynamic considerations in microfluidics.


2020 ◽  
Author(s):  
Michael Weger ◽  
Oswald Knoth ◽  
Bernd Heinold

Abstract. The capability for high spatial resolutions is an important feature of accurate numerical models dedicated to simulate the large spatial variability of urban air pollution. On the one hand, the well established mesoscale chemistry transport models have their obvious short-comings attributed to their extensive use of paramterizations. On the other hand, obstacle resolving computational fluid dynamic models, while accurate, still often demand too high computational costs, to be applied on a regular and holistic basis. The major reason for the inflated numerical costs is the required horizontal resolution to meaningfully apply the obstacle discretization, which is most often based on boundary-fitted grids, like e.g. the marker-and-cell method. Here we present a large-eddy-simulation approach that uses diffusive obstacle boundaries, which are derived from a simplified diffusive interface approach for moving obstacles. The diffusive interface approach is well established in two-phase modeling, but to the author’s knowledge has not been applied in urban boundary layer simulations so far. Our dispersion model is capable of representing buildings over a wide range of spatial resolutions, including marginally coarse resolutions inaccessible for standard methods. This opens up a very promising opportunity for application of accurate air quality simulations and forecasts on entire mid-sized city domains. Furthermore, our approach is capable of incorporating the influence of the land orography by the additional optional use of terrain-following coordinates. We validated the dynamic core against a set of numerical benchmarks and a standard high-quality wind-tunnel data set for dispersion-model evaluation.


Author(s):  
Akira Kariyasaki ◽  
Akiharu Ousaka ◽  
Tohru Fukano ◽  
Masazumi Kagawa

The effects of forced vibrations on the motion of air-water two-phase mixture were studied in 2.4mm I.D. horizontal tube over rather wide range of flow conditions (about 60 flows for lateral vibration, 4 flows and 1 stagnant mixture for longitudinal vibration). 13 different modes of sinusoidal vibration with 1–8mm amplitude and 1–7.7 Hz frequency were exerted on the test tube. Pressure drop, void fraction and flow pattern of the two-phase flow were compared to those of the flow without forced vibration. It was made clear that the lateral vibration exerted on the tube induced a self exciting fluctuation of the pressure drop for a specific flow condition and longitudinal vibration on the tube promoted the bubble coalescence.


Author(s):  
Alexander Meire ◽  
Laurent De Moerloose ◽  
Joris Degroote

Abstract Two-phase flows are encountered in a wide range of technological and natural situations. In the last decade, advances in the available computing power have enabled to solve the underlying equations with computational fluid dynamics (CFD) using multi-phase models for the interaction between the different phases. In this study, a volume of fluid (VOF) solver in OpenFOAM is used to investigate the pressure profile in a co-current upward pipe flow of air and water. It is hypothesized that pressure drop events are caused by local buildup of the slower liquid, whereas conservation of volume flow rate forces the dense liquid to accelerate. The calculated pressure gradients are larger than the corresponding experimental data. It is shown that this mismatch might be caused by the evaluation of the momentum balance based on mixture properties; the mixture density increases the effective liquid obstruction and the corresponding pressure drop. Finally, the effect of these pressure fluctuations on the pipe’s vibration is studied using a one-dimensional independent rings structural model.


2020 ◽  
Vol 10 (4) ◽  
pp. 1349
Author(s):  
Guan-Chen Liu ◽  
Li Xu ◽  
Jie Li ◽  
Qiang Sun ◽  
Zong-Qiang Liu ◽  
...  

Under the erosion of seawater–ice two-phase flow, seawater in pipelines of polar ships can cause the pipeline failures that threaten the safety of navigations. The discrete phase model (DPM) and erosion wear model (EWM) were established by using the computational fluid dynamics (CFD) method for numerical analysis of the 90° elbow with relatively severe erosion. This paper explores the erosion effect of pipelines under different conditions and puts forward optimal measures for pipeline protection. Compared with the existing multiphase flow research, the novelty of this study is that vibration conditions are considered and parameters such as two-phase flow velocity, ice packing factor (IPF), ice particle diameter and ice particle rotation characteristics are combined with vibration conditions. Combined with the comprehensive analysis of erosion effects of static pipelines, a general law of seawater pipeline wear under vibration is obtained. The results show that pipeline wear under vibration is more serious than under static conditions. Under static conditions, the wear of the same section in the pipeline increases with the increases of two-phase flow velocity and IPF. However, under vibration conditions, when the velocity is less than 3 m/s, the wear of the pipeline has no significant change, while when the velocity is over 3 m/s, the wear rate increases significantly. The particle diameter has little effect on the wear of static pipes, but under the vibration condition, the pipe wear rate decreases with the increase of particle diameter, and it starts to stabilize when the diameter exceeds 0.3 mm. If the rotation characteristics of ice particles are taken into account, the wear rate along the pipeline is significantly higher than that without particle rotation.


Sign in / Sign up

Export Citation Format

Share Document