scholarly journals Perspectives, Tendencies, and Guidelines in Affinity-Based Strategies for the Recovery and Purification of PEGylated Proteins

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Luis Alberto Mejía-Manzano ◽  
Patricia Vázquez-Villegas ◽  
José González-Valdez

In recent years, the effective purification of PEGylated therapeutic proteins from reaction media has received particular attention. Although several techniques have been used, affinity-based strategies have been scarcely explored despite the fact that, after PEGylation, marked changes in the molecular affinity parameters of the modified molecules are observed. With this in mind, future contributions in the bioseparation of these polymer-protein conjugates are expected to exploit affinity in chromatographic and nonchromatographic techniques which will surely derive in the integration of different operations. However, this will only occur as novel ligands which are simultaneously found. As it will be mentioned, these novel ligands may be screened or designed. In both cases, computer-aided tools will support their identification or development. Additionally, ligand discovery by high-throughput screening (HTS) is believed to become a fast, economic, and informative technology that will aid in the mass production of ligands along with genetic engineering and related technologies. Therefore, besides analyzing the state of the art in affinity separation strategies for PEGylated molecules, this review proposes a basic guideline for the selection of adequate ligands to provide information and prospective on the future of affinity operations in solving this particular bioengineering problem.

Author(s):  
A. N. Bozhko

Computer-aided design of assembly processes (Computer aided assembly planning, CAAP) of complex products is an important and urgent problem of state-of-the-art information technologies. Intensive research on CAAP has been underway since the 1980s. Meanwhile, specialized design systems were created to provide synthesis of assembly plans and product decompositions into assembly units. Such systems as ASPE, RAPID, XAP / 1, FLAPS, Archimedes, PRELEIDES, HAP, etc. can be given, as an example. These experimental developments did not get widespread use in industry, since they are based on the models of products with limited adequacy and require an expert’s active involvement in preparing initial information. The design tools for the state-of-the-art full-featured CAD/CAM systems (Siemens NX, Dassault CATIA and PTC Creo Elements / Pro), which are designed to provide CAAP, mainly take into account the geometric constraints that the design imposes on design solutions. These systems often synthesize technologically incorrect assembly sequences in which known technological heuristics are violated, for example orderliness in accuracy, consistency with the system of dimension chains, etc.An AssemBL software application package has been developed for a structured analysis of products and a synthesis of assembly plans and decompositions. The AssemBL uses a hyper-graph model of a product that correctly describes coherent and sequential assembly operations and processes. In terms of the hyper-graph model, an assembly operation is described as shrinkage of edge, an assembly plan is a sequence of shrinkages that converts a hyper-graph into the point, and a decomposition of product into assembly units is a hyper-graph partition into sub-graphs.The AssemBL solves the problem of minimizing the number of direct checks for geometric solvability when assembling complex products. This task is posed as a plus-sum two-person game of bicoloured brushing of an ordered set. In the paradigm of this model, the brushing operation is to check a certain structured fragment for solvability by collision detection methods. A rational brushing strategy minimizes the number of such checks.The package is integrated into the Siemens NX 10.0 computer-aided design system. This solution allowed us to combine specialized AssemBL tools with a developed toolkit of one of the most powerful and popular integrated CAD/CAM /CAE systems.


Author(s):  
Xabier Rodríguez-Martínez ◽  
Enrique Pascual-San-José ◽  
Mariano Campoy-Quiles

This review article presents the state-of-the-art in high-throughput computational and experimental screening routines with application in organic solar cells, including materials discovery, device optimization and machine-learning algorithms.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Aliaksei Vasilevich ◽  
Aurélie Carlier ◽  
David A. Winkler ◽  
Shantanu Singh ◽  
Jan de Boer

AbstractNatural evolution tackles optimization by producing many genetic variants and exposing these variants to selective pressure, resulting in the survival of the fittest. We use high throughput screening of large libraries of materials with differing surface topographies to probe the interactions of implantable device coatings with cells and tissues. However, the vast size of possible parameter design space precludes a brute force approach to screening all topographical possibilities. Here, we took inspiration from Nature to optimize materials surface topographies using evolutionary algorithms. We show that successive cycles of material design, production, fitness assessment, selection, and mutation results in optimization of biomaterials designs. Starting from a small selection of topographically designed surfaces that upregulate expression of an osteogenic marker, we used genetic crossover and random mutagenesis to generate new generations of topographies.


2021 ◽  
pp. 026553222110361
Author(s):  
Chao Han

Over the past decade, testing and assessing spoken-language interpreting has garnered an increasing amount of attention from stakeholders in interpreter education, professional certification, and interpreting research. This is because in these fields assessment results provide a critical evidential basis for high-stakes decisions, such as the selection of prospective students, the certification of interpreters, and the confirmation/refutation of research hypotheses. However, few reviews exist providing a comprehensive mapping of relevant practice and research. The present article therefore aims to offer a state-of-the-art review, summarizing the existing literature and discovering potential lacunae. In particular, the article first provides an overview of interpreting ability/competence and relevant research, followed by main testing and assessment practice (e.g., assessment tasks, assessment criteria, scoring methods, specificities of scoring operationalization), with a focus on operational diversity and psychometric properties. Second, the review describes a limited yet steadily growing body of empirical research that examines rater-mediated interpreting assessment, and casts light on automatic assessment as an emerging research topic. Third, the review discusses epistemological, psychometric, and practical challenges facing interpreting testers. Finally, it identifies future directions that could address the challenges arising from fast-changing pedagogical, educational, and professional landscapes.


Author(s):  
D. Alperstein ◽  
M. Narkis ◽  
M. Zilberman ◽  
A. Siegmann

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Saba Moeinizade ◽  
Ye Han ◽  
Hieu Pham ◽  
Guiping Hu ◽  
Lizhi Wang

AbstractMultiple trait introgression is the process by which multiple desirable traits are converted from a donor to a recipient cultivar through backcrossing and selfing. The goal of this procedure is to recover all the attributes of the recipient cultivar, with the addition of the specified desirable traits. A crucial step in this process is the selection of parents to form new crosses. In this study, we propose a new selection approach that estimates the genetic distribution of the progeny of backcrosses after multiple generations using information of recombination events. Our objective is to select the most promising individuals for further backcrossing or selfing. To demonstrate the effectiveness of the proposed method, a case study has been conducted using maize data where our method is compared with state-of-the-art approaches. Simulation results suggest that the proposed method, look-ahead Monte Carlo, achieves higher probability of success than existing approaches. Our proposed selection method can assist breeders to efficiently design trait introgression projects.


Author(s):  
Lindley Manning

The purpose of this paper is to inform the Academy of an application of computer graphics that has been successful in the court room and which has the potential for extension to many related needs of the forensic engineer. An additional purpose is to examine the possibility of cooperation within the Academy to make a broad database and selection of equipment available to the members. Attentive engineers of today are well aware of the growing use and impact of computer-aided drafting, design and analysis in a wide variety of industries. In our field, we are aware of large analysis programs which have been used with success in court, for example the CRASH series. The authors forensic engineering partnership has developed ways to utilize the more widely available drafting systems to inexpensively fill the gap between photographic evidence and full engineering drawings. We have also found that CAD drawings appear to have more impact in court than hand done drawings. In some cases


Author(s):  
Lynne Bowker ◽  
Gloria Corpas Pastor

In today’s market, the use of technology by translators is no longer a luxury but a necessity if they are to meet rising market demands for the quick delivery of high-quality texts in many languages. This chapter describes a selection of computer-aided translation tools, resources, and applications, most commonly employed by translators to help them increase productivity while maintaining high quality in their work. This chapter also considers some of the ways in which translation technology has influenced the practice and the product of translation, as well as translators’ professional competence and their preferences with regard to tools and resources.


Author(s):  
Willi Sauerbrei ◽  
◽  
Aris Perperoglou ◽  
Matthias Schmid ◽  
Michal Abrahamowicz ◽  
...  

2012 ◽  
Vol 17 (4) ◽  
pp. 542-549 ◽  
Author(s):  
Maria Cândida Monteiro ◽  
Mercedes de la Cruz ◽  
Juan Cantizani ◽  
Catalina Moreno ◽  
José R. Tormo ◽  
...  

Natural products are an inexhaustible source for drug discovery. However, the validation and selection of primary screening assays are vital to guarantee a selection of extracts or molecules with relevant pharmacological action and worthy of following up. The assay must be rapid, simple, easy to implement, and produce quick results and preferably at a low cost. In this work, we developed and validated a colorimetric microtiter assay using the resazurin viability dye. The parameters of the resazurin method for high-throughput screening (HTS) using natural extracts against Aspergillus fumigatus were optimized and set up. The extracts plus RPMI-1640 modified medium containing the spores and 0.002% resazurin were added per well. The fluorescence was read after 24 to 30 h of incubation. The resazurin proved to be as suitable as Alamar Blue for determining the minimal inhibitory concentration of different antifungals against A. fumigatus and effective to analyze fungicidal and fungistatic compounds. An HTS of 12 000 microbial extracts was carried out against two A. fumigatus strains, and 2.7% of the extracts displayed antifungal activity. Our group has been the first to use this methodology for screening a collection of natural extracts to identify compounds with antifungal activity against the medically important human pathogen A. fumigatus.


Sign in / Sign up

Export Citation Format

Share Document