scholarly journals 17-Allylamino-demethoxygeldanamycin Used Alone or in Combination with Sodium Orthovanadate Promotes Apoptosis and Inhibits Invasion of SH-SY5Y Cells by Modulating PIWIL2

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Xiaohong Tian ◽  
Wumei Wei ◽  
Xiaohong Wang ◽  
Qiang Ao ◽  
Jun Fan ◽  
...  

Neuroblastoma (NB) is one of the most common extracranial solid tumors of childhood and accounts for 15% of cancer deaths. Even with the multimodality treatment protocols, the advanced-stage tumor overall 5-year survival rate is less than 50%. Therefore, novel drug therapy targeting cellular signal transduction pathways regulating the apoptotic cascade may be important for the treatment of drug-resistant NB. In our previous studies, we have demonstrated that 5 μM sodium orthovanadate (SOV) induced the apoptosis of SH-SY5Y cells. 17-Allylamino-demethoxygeldanamycin (17-AAG) is a geldanamycin- (GA-) derived heat shock protein 90 (Hsp90) inhibitor, and it has been shown to have potent antitumor activity in head and neck cancers. However, the effect of 17-AAG on the apoptosis of NB cells has not been reported. Therefore, the purpose of this study was to determine the effects of 17-AAG and SOV on the growth and invasion of SH-SY5Y cells in vitro and explore the related mechanism. In this study, we first investigated the antiviability effect of 17-AAG on SH-SY5Y cells, then studied the cell apoptosis and invasion influenced by 17-AAG and SOV, and assessed the role of PIWI-Like2 (PIWIL2) and piRNA-PIWI signaling in it. The results showed that 5 μM 17-AAG inhibited cell growth and viability and induced apoptosis in SH-SY5Y cells. Both 17-AAG and SOV reduced the level of PIWIL2 and Bcl-xl proteins and inhibited the invasion of SH-SY5Y cells. In addition, the combined use of the two drugs had greater effect than the single use of any drug.

2001 ◽  
Vol 281 (6) ◽  
pp. C1819-C1824 ◽  
Author(s):  
Yao Song ◽  
Jay L. Zweier ◽  
Yong Xia

Recent studies showed that heat shock protein 90 (HSP90) enhances nitric oxide (NO) synthesis from endothelial and neuronal NO synthase (eNOS and nNOS, respectively). However, these findings were based on indirect NO measurements. Moreover, although our previous studies showed that the action of HSP90 involves increased Ca2+/calmodulin (Ca2+/CaM) binding, quantitative measurements of the effect of HSP90 on CaM binding to nNOS have been lacking. With electron paramagnetic resonance spectroscopy, we directly measured NO signals from purified nNOS. HSP90 augmented NO formation from nNOS in a dose-dependent manner. Tryptophan fluorescence-quenching measurements revealed that HSP90 markedly reduced the K d of CaM to nNOS (0.5 ± 0.1 nM vs. 9.4 ± 1.8 nM in the presence and absence of HSP90, P < 0.01). Ca2+ ionophore triggered strong NO production from nNOS-transfected cells, and this was significantly reduced by the HSP90 inhibitor geldanamycin. Thus these studies provide direct evidence demonstrating that HSP90 enhances nNOS catalytic function in vitro and in intact cells. The effect of HSP90 is mediated by the enhancement of CaM binding to nNOS.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Diana Spiegelberg ◽  
Andris Abramenkovs ◽  
Anja Charlotte Lundgren Mortensen ◽  
Sara Lundsten ◽  
Marika Nestor ◽  
...  

AbstractOncogenic client-proteins of the chaperone Heat shock protein 90 (HSP90) insure unlimited tumor growth and are involved in resistance to chemo- and radiotherapy. The HSP90 inhibitor Onalespib initiates the degradation of oncoproteins, and might also act as a radiosensitizer. The aim of this study was therefore to evaluate the efficacy of Onalespib in combination with external beam radiotherapy in an in vitro and in vivo approach. Onalespib downregulated client proteins, lead to increased apoptosis and caused DNA-double-strands. Monotherapy and combination with radiotherapy reduced colony formation, proliferation and migration assessed in radiosensitive HCT116 and radioresistant A431 cells. In vivo, a minimal treatment regimen for 3 consecutive days of Onalespib (3 × 10 mg/kg) doubled survival, whereas Onalespib with radiotherapy (3 × 2 Gy) caused a substantial delay in tumor growth and prolonged the survival by a factor of 3 compared to the HCT116 xenografted control group. Our results demonstrate that Onalespib exerts synergistic anti-cancer effects when combined with radiotherapy, most prominent in the radiosensitive cell models. We speculate that the depletion and downregulation of client proteins involved in signalling, migration and DNA repair mechanisms is the cause. Thus, individually, or in combination with radiotherapy Onalespib inhibits tumor growth and has the potential to improve radiotherapy outcomes, prolonging the overall survival of cancer patients.


Blood ◽  
2009 ◽  
Vol 114 (24) ◽  
pp. 5024-5033 ◽  
Author(s):  
Yongchao Wang ◽  
Warren Fiskus ◽  
Daniel G. Chong ◽  
Kathleen M. Buckley ◽  
Kavita Natarajan ◽  
...  

AbstractThe mutant JAK2V617F tyrosine kinase (TK) is present in the majority of patients with BCR-ABL–negative myeloproliferative neoplasms (MPNs). JAK2V617F activates downstream signaling through the signal transducers and activators of transcription (STAT), RAS/mitogen-activated protein kinase (MAPK), and phosphatidylinositol 3 (PI3)/AKT pathways, conferring proliferative and survival advantages in the MPN hematopoietic progenitor cells (HPCs). Treatment with the pan-histone deacetylase (HDAC) inhibitor panobinostat (PS) is known to inhibit the chaperone function of heat shock protein 90, as well as induce growth arrest and apoptosis of transformed HPCs. Here, we demonstrate that PS treatment depletes the autophosphorylation, expression, and downstream signaling of JAK2V617F. Treatment with PS also disrupted the chaperone association of JAK2V617F with hsp90, promoting proteasomal degradation of JAK2V617F. PS also induced apoptosis of the cultured JAK2V617F-expressing human erythroleukemia HEL92.1.7 and Ba/F3-JAK2V617F cells. Treatment with the JAK2 TK inhibitor TG101209 attenuated JAK2V617F autophosphorylation and induced apoptosis of HEL92.1.7 and Ba/F3-JAK2V617F cells. Cotreatment with PS and TG101209 further depleted JAK/STAT signaling and synergistically induced apoptosis of HEL92.1.7 and Ba/F3-JAK2V617F cells. Cotreatment with TG101209 and PS exerted greater cytotoxicity against primary CD34+ MPN cells than normal CD34+ HPCs. These in vitro findings suggest combination therapy with HDAC and JAK2V617F inhibitors is of potential value for the treatment of JAK2V617F-positive MPN.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1829-1829
Author(s):  
Hiroaki Taniguchi ◽  
Hiroo Hasegawa ◽  
Daisuke Sasaki ◽  
Koji Ando ◽  
Yasushi Sawayama ◽  
...  

Abstract Background Adult T-cell leukemia-lymphoma (ATL) is a chemo-resistant malignancy. Heat shock protein 90 (HSP90) is involved in folding and functions as a chaperone for multiple client proteins, many of which are important in tumorigenesis. The HSP90 inhibitor 17-AAG, derived from geldanamycin, has potent antitumor activity against ATL. However, geldanamycin derivatives have several limitations, including poor solubility, formulation difficulties, and severe hepatotoxicity in clinical settings, which have prompted development of second generation synthetic HSP90 inhibitors including NVP-AUY922 (AUY922), a second generation isoxazole-based non-geldanamycin HSP90 inhibitor that inhibits the ATPase activity of HSP90. AUY922 has shown nanomolar efficacy against a wide range of human cancer cells in vitro and also inhibits progression of a variety of tumors in vivo. Phase I/II studies of AUY922 with advanced solid tumors and hematological malignancies are presently underway. Here, we studied the effects of AUY922 on ATL in vitro and in vivo. Results We initially analyzed the effects of AUY922 (Novartis Pharmaceuticals) on survival of ATL-derived cell lines (KK1, SO4, LM-Y1, KOB, ST1) and HTLV-I-infected T-cell lines (MT2, HuT102). Cells cultured with various concentrations of AUY922 for 72 hours showed survival suppression in a dose-dependent manner in MTS assay findings. The concentrations of AUY922 required to inhibit cell survival by 50% (IC50) varied from 12.5 to 25.0 nM. We also found that the inhibitory effect of AUY was superior to that of 17-AAG. We further assessed AUY922-induced cell survival inhibition with peripheral blood mononuclear cells (PBMCs) obtained from patients with ATL and healthy donors. AUY922 induced apparent cell survival suppression in primary ATL cells, but not in normal PBMCs, while FACS analysis revealed that AUY922 induced cell-cycle arrest and apoptosis in these cell lines. Interestingly, AUY922 induced down-regulation of PIM kinases, which was confirmed by DNA microarray, qRT-PCR, and WB analysis results. Furthermore, SGI-1776, a PIM kinase inhibitor, successfully induced cell survival suppression in ATL and HTLV-1 infected cell lines in both dose- and cell-dependent manners. To elucidate the molecular mechanisms of cytotoxicity, we also examined the expressions of several client proteins using WB analysis. AUY922 treatment led to strong up-regulation of HSP70, a surrogate marker of HSP90 inhibition, and a dose-dependent decrease of HSP90 client proteins associated with cell survival, proliferation, and cell cycle in the G1 phase, including p-Akt, Akt, IκBα, IKKα, IKKβ, IKKγ, Cdk4, Cdk6, and survivin. In a xenograft model created with C.B-17/Icr-SCID mice, intraperitoneal administration of the vehicle or AUY922 was given after injection of HuT102 cells. In the control mice, bulky tumors grew within 4 weeks, whereas daily administrations of AUY922 significantly impaired tumor growth. Conclusion Together, our findings suggest that AUY922 may be an effective therapeutic agent for ATL and PIM kinases are a novel therapeutic target. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Jung Min Park ◽  
Yoon-Jae Kim ◽  
Soeun Park ◽  
Minsu Park ◽  
Lee Farrand ◽  
...  

AbstractTrastuzumab resistance in HER2-positive breast cancer is associated with a poorer prognosis. HSP90 is thought to play a major role in such resistance, but N-terminal inhibitors of this target have had little success. We sought to investigate the utility of NCT-547, a novel, rationally-designed C-terminal HSP90 inhibitor in the context of overcoming trastuzumab resistance. NCT-547 treatment significantly induced apoptosis without triggering the heat shock response (HSR), accompanied by caspase-3/− 7 activation in both trastuzumab-sensitive and -resistant cells. NCT-547 effectively promoted the degradation of full-length HER2 and truncated p95HER2, while also attenuating hetero-dimerization of HER2 family members. The impairment of cancer stem-like traits was observed with reductions in ALDH1 activity, the CD24low/CD44high subpopulation, and mammosphere formation in vitro and in vivo. NCT-547 was an effective inhibitor of tumor growth and angiogenesis, and no toxic outcomes were found in initial hepatic and renal analysis. Our findings suggest that NCT-547 may have applications in addressing trastuzumab resistance in HER2-positive breast cancer.


2021 ◽  
Vol 9 (5) ◽  
pp. 1089
Author(s):  
Antonio Luis de O. A. Petersen ◽  
Benjamin Cull ◽  
Beatriz R. S. Dias ◽  
Luana C. Palma ◽  
Yasmin da S. Luz ◽  
...  

The heat shock protein 90 (Hsp90) is thought to be an excellent drug target against parasitic diseases. The leishmanicidal effect of an Hsp90 inhibitor, 17-N-allylamino-17-demethoxygeldanamycin (17-AAG), was previously demonstrated in both in vitro and in vivo models of cutaneous leishmaniasis. Parasite death was shown to occur in association with severe ultrastructural alterations in Leishmania, suggestive of autophagic activation. We hypothesized that 17-AAG treatment results in the abnormal activation of the autophagic pathway, leading to parasite death. To elucidate this process, experiments were performed using transgenic parasites with GFP-ATG8-labelled autophagosomes. Mutant parasites treated with 17-AAG exhibited autophagosomes that did not entrap cargo, such as glycosomes, or fuse with lysosomes. ATG5-knockout (Δatg5) parasites, which are incapable of forming autophagosomes, demonstrated lower sensitivity to 17-AAG-induced cell death when compared to wild-type (WT) Leishmania, further supporting the role of autophagy in 17-AAG-induced cell death. In addition, Hsp90 inhibition resulted in greater accumulation of ubiquitylated proteins in both WT- and Δatg5-treated parasites compared to controls, in the absence of proteasome overload. In conjunction with previously described ultrastructural alterations, herein we present evidence that treatment with 17-AAG causes abnormal activation of the autophagic pathway, resulting in the formation of immature autophagosomes and, consequently, incidental parasite death.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Brittany Epp-Ducharme ◽  
Michael Dunne ◽  
Linyu Fan ◽  
James C. Evans ◽  
Lubabah Ahmed ◽  
...  

AbstractThe heat shock protein 90 inhibitor, luminespib, has demonstrated potent preclinical activity against numerous cancers. However, clinical translation has been impeded by dose-limiting toxicities that have necessitated dosing schedules which have reduced therapeutic efficacy. As such, luminespib is a prime candidate for reformulation using advanced drug delivery strategies that improve tumor delivery efficiency and limit off-target side effects. Specifically, thermosensitive liposomes are proposed as a drug delivery strategy capable of delivering high concentrations of drug to the tumor in combination with other chemotherapeutic molecules. Indeed, this work establishes that luminespib exhibits synergistic activity in lung cancer in combination with standard of care drugs such as cisplatin and vinorelbine. While our research team has previously developed thermosensitive liposomes containing cisplatin or vinorelbine, this work presents the first liposomal formulation of luminespib. The physico-chemical properties and heat-triggered release of the formulation were characterized. Cytotoxicity assays were used to determine the optimal drug ratios for treatment of luminespib in combination with cisplatin or vinorelbine in non-small cell lung cancer cells. The formulation and drug combination work presented in this paper offer the potential for resuscitation of the clinical prospects of a promising anticancer agent.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1798
Author(s):  
Ankit K. Rochani ◽  
Sivakumar Balasubramanian ◽  
Aswathy Ravindran Girija ◽  
Toru Maekawa ◽  
Gagan Kaushal ◽  
...  

Drugs targeting heat shock protein 90 (Hsp90) have been extensively explored for their anticancer potential in advanced clinical trials. Nanoformulations have been an important drug delivery platform for the anticancer molecules like Hsp90 inhibitors. It has been reported that bovine serum albumin (BSA) nanoparticles (NPs) serve as carriers for anticancer drugs, which have been extensively explored for their therapeutic efficacy against cancers. Luminespib (also known as NVP-AUY922) is a new generation Hsp90 inhibitor that was introduced recently. It is one of the most studied Hsp90 inhibitors for a variety of cancers in Phase I and II clinical trials and is similar to its predecessors such as the ansamycin class of molecules. To our knowledge, nanoformulations for luminespib remain unexplored for their anticancer potential. In the present study, we developed aqueous dispensable BSA NPs for controlled delivery of luminespib. The luminespib-loaded BSA NPs were characterized by SEM, TEM, FTIR, XPS, UV-visible spectroscopy and fluorescence spectroscopy. The results suggest that luminespib interacts by non-covalent reversible interactions with BSA to form drug-loaded BSA NPs (DNPs). Our in vitro evaluations suggest that DNP-based aqueous nanoformulations can be used in both pancreatic (MIA PaCa-2) and breast (MCF-7) cancer therapy.


2011 ◽  
Vol 286 (22) ◽  
pp. 20065-20077 ◽  
Author(s):  
Dipanjan Dutta ◽  
Shiladitya Chattopadhyay ◽  
Parikshit Bagchi ◽  
Umesh Chandra Halder ◽  
Satabdi Nandi ◽  
...  

Heat shock protein 90 (Hsp90) has been reported to positively regulate rotavirus replication by modulating virus induced PI3K/Akt and NFκB activation. Here, we report the active association of Hsp90 in the folding and stabilization of rotavirus nonstructural protein 3 (NSP3). In pCD-NSP3-transfected cells, treatment with Hsp90 inhibitor (17-N,N-dimethylethylenediamine-geldanamycin (17DMAG)) resulted in the proteasomal degradation of NSP3. Sequence analysis and deletion mutations revealed that the region spanning amino acids 225–258 within the C-terminal eIF4G-binding domain of NSP3 is a putative Hsp90 binding region. Co-immunoprecipitation and mammalian two-hybrid experiments revealed direct interaction of the C-terminal 12-kDa domain of Hsp90 (C90) with residues 225–258 of NSP3. NSP3-Hsp90 interaction is important for the formation of functionally active mature NSP3, because full-length NSP3 in the presence of the Hsp90 inhibitor or NSP3 lacking the amino acid 225–258 region did not show NSP3 dimers following in vitro coupled transcription-translation followed by chase. Disruption of residues 225–258 within NSP3 also resulted in poor RNA binding and eIF4G binding activity. In addition, inhibition of Hsp90 by 17DMAG resulted in reduced nuclear translocation of poly(A)-binding protein and translation of viral proteins. These results highlight the crucial role of Hsp90 chaperone in the regulation of assembly and functionality of a viral protein during the virus replication and propagation in host cells.


Sign in / Sign up

Export Citation Format

Share Document