scholarly journals Study on the Bond Strength of Steel-Concrete Composite Rectangular Fluted Sections

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Surya J. Varma ◽  
Jane H. Henderson

Concrete-filled steel tube (CFST) sections are structural members that effectively use the best properties of steel and concrete. Steel tube at the outer perimeter effectively resists tension and bending moments and also increases the stiffness of the section as steel has a high modulus of elasticity. The infilled concrete delays the local buckling of the thin outer steel tube. The interface bond strength plays a major role in the composite action of CFST sections. Provision of rectangular flutes on steel tube on CFST sections will improve the bond failure load and thereby the performance of CFST sections significantly. In this paper, the bond strength and displacement characteristics of steel-concrete composite sections are determined by incorporating rectangular shaped flutes into the steel tube. A total of five sections were tested to assess the influence of flutes on the bond strength. These tested sections are analyzed and are used to develop a finite element model using the finite element software ABAQUS version 6.13. The parameters chosen for the FE study are (i) type of flutes (outward and inward), (ii) D/t ratio (40, 60, and 80), (iii) number of flutes (2, 3, 4, 5, and 6), and (iv) dimension of flutes ((20 mm × 10 mm), (40 mm × 10 mm), and (60 mm × 10 mm)). Bond failure load is found to be higher for outward fluted sections compared to inward fluted and plain CFST sections.

2019 ◽  
Vol 2019 ◽  
pp. 1-24 ◽  
Author(s):  
Hongyuan Fang ◽  
Peiling Tan ◽  
Bin Li ◽  
Kangjian Yang ◽  
Yunhui Zhang

For flexible pipelines, the influence of backfill compaction on the deformation of the pipe has always been the focus of researchers. Through the finite element software, a three-dimensional soil model matching the exterior wall corrugation of the high-density polyethylene pipe was skillfully established, and the “real” finite element model of pipe-soil interaction verified the accuracy through field test. Based on the model, the strain distribution at any position of the buried HDPE pipe can be obtained. Changing the location and extent of the loose backfill, the strain and radial displacement distributions of the interior and exterior walls of the HDPE pipe under different backfill conditions when external load applied to the foundation were analyzed, and the dangerous parts of the pipe where local buckling and fracture may occur were identified. It is pointed out that when the backfill is loose, near the interface between the backfill loose region and the well-compacted region, the maximum circumferential strain occurs frequently, the exterior wall strain is more likely to increase greatly on the region near crown or invert, the interior wall strains increase in amplitude at springline, and the location of the loose region has a greater influence on the strain of the pipe than the size of the loose area.


2010 ◽  
Vol 34-35 ◽  
pp. 242-246
Author(s):  
Jian Rong Pan ◽  
Zhan Wang ◽  
Xue Shui Sun

To replace full penetration weld with twin fillet weld for the design and construction of joint of beam to CFST (concrete-filled steel tube) column with interior strengthening ring, six specimens were tested by incremental loading and cyclic loading. The finite element package ANSYS was used to study the nonlinear behavior of such specimens. The finite element model was validated by comparing the computed values with experimental results. The failure mode was local buckling in the flange edge between beam flange and steel tube because of local stress concentration. When the joint was damaged, the stress of weld (including full penetration, partial penetration, and twin fillet weld) between steel tube and interior strengthening ring is smaller than yield strength. The twin fillet weld was proposed for design and construction of the joint instead of full penetration weld.


2014 ◽  
Vol 494-495 ◽  
pp. 1815-1819
Author(s):  
Li Qiang An ◽  
Yu Chu Liu ◽  
Bing Zhang

In this paper, the dynamic characteristics of a 1000kV UHV steel tubular tower with double circuit transmission lines on the same tower are analyzed under seismic loading with 8 degrees fortification intensity. Firstly, the finite element model of the tower and simulation of the earthquake are built in ANSYS finite element software. The dynamic characteristics of steel tube tower under Seismic Loads, such as the time-domain curves of displacement, velocity and force of UHV steel tower under Seismic Loads are obtained. The impact of 1000kV UHV transmission tower under nonlinear vibration of simplified conductor model is studied. The results can help to understand the damage forms of UHV steel tower under earthquake, to improve the capabilities to resist earthquake loads and severe damage of environmental loads under various field conditions for UHV steel tower.


2012 ◽  
Vol 446-449 ◽  
pp. 688-694 ◽  
Author(s):  
Qi Shi Zhou ◽  
Yin Xu ◽  
Zhi Wu Yu

Nonlinear finite element model is established for the square interior constrained concrete filled steel tube column based on the research of the element type and material constitutive relation with finite element software ANSYS to find out the influence of the thickness of the steel tube, location of studs and geometry of the stirrups on the compression capacity of the short column, The results show that the compression capacity of the short column has something to do with the thickness of the steel tube and the studs, but the stirrups can eventually enhance a lot for the compression capacity as the validity is confirmed for the coherence of the results stepped from the finite element model and in test.


2011 ◽  
Vol 243-249 ◽  
pp. 51-54
Author(s):  
Ya Feng Xu ◽  
Peng Ju Sun ◽  
Li Zhang

According to the existed theory foundation, the authors made a simulated analysis on mechanical properties of a connection between steel reinforced concrete filled with steel tube column and steel beam, using ABAQUS, which is a finite element software. The authors established element model reasonably, and got load- displacement curve in different axial compression ratios. According to the result, with the increasing of axial compression ratio, the elements' limit bearing capacity reduces significantly.


Author(s):  
Furqan Qamar ◽  
Shunde Qin

AbstractAround the globe, the need for additional housing, due to the increase in world population, has led to the exploration of more cost effective and environmentally friendly forms of construction. Out of many technologies found, mortar-free interlocked masonry systems were developed to eliminate the deficiency of traditional masonry. For such systems against earthquakes, lateral resistance can be enhanced with plaster. But there is a need to further improve the performance of plaster in mortar-free interlocking walls for better ductility. The objective of this study is to develop nonlinear finite element (NLFE) models to explore the likely failure mechanism (e.g. bond failure) of such systems and to do parametric studies more cheaply than constructing many walls. Lateral failure load, load–displacement curves and crack patterns were compared with the experimental results. Parametric studies involving variation in block and plaster compressive strength and plaster thickness were undertaken using TNO DIANA NLFE models. A 150% increase in thickness of plaster only resulted in 28% increase in failure load, and column thickness can be reduced to theoretical 25 mm of blocks with 8 mm of plaster and yet exceed the lateral strength of a 150-mm-thick unplastered column. A cost analysis was also carried out, based on NLFE models, and showed that fibrous plastered column with 25-mm-thickness blocks gave equivalent performance to the 150-mm-thick unplastered column with 67% cost saving.


2021 ◽  
pp. 136943322110073
Author(s):  
Yu Cheng ◽  
Yuanlong Yang ◽  
Binyang Li ◽  
Jiepeng Liu

To investigate the seismic behavior of joint between special-shaped concrete-filled steel tubular (CFST) column and H-section steel beam, a pseudo-static test was carried out on five specimens with scale ratio of 1:2. The investigated factors include stiffening types of steel tube (multi-cell and tensile bar) and connection types (exterior diaphragm and vertical rib). The failure modes, hysteresis curves, skeleton curves, stress distribution, and joint shear deformation of specimens were analyzed to investigate the seismic behaviors of joints. The test results showed the connections of exterior diaphragm and vertical rib have good seismic behavior and can be identified as rigid joint in the frames with bracing system according to Eurocode 3. The joint of special-shaped column with tensile bars have better seismic performance by using through vertical rib connection. Furthermore, a finite element model was established and a parametric analysis with the finite element model was conducted to investigate the influences of following parameters on the joint stiffness: width-to-thickness ratio of column steel tube, beam-to-column linear stiffness ratio, vertical rib dimensions, and axial load ratio of column. Lastly, preliminary design suggestions were proposed.


2021 ◽  
pp. 1-24
Author(s):  
Hamidreza Mahdavi ◽  
Konstantinos Poulios ◽  
Christian F. Niordson

Abstract This work evaluates and revisits elements from the depth-sensing indentation literature by means of carefully chosen practical indentation cases, simulated numerically and compared to experiments. The aim is to close a series of debated subjects, which constitute major sources of inaccuracies in the evaluation of depth-sensing indentation data in practice. Firstly, own examples and references from the literature are presented in order to demonstrate how crucial self-similarity detection and blunting distance compensation are, for establishing a rigorous link between experiments and simple sharp-indenter models. Moreover, it is demonstrated, once again, in terms of clear and practical examples, that no more than two parameters are necessary to achieve an excellent match between a sharp indenter finite element simulation and experimental force-displacement data. The clear conclusion is that reverse analysis methods promising to deliver a set of three unique material parameters from depth-sensing indentation cannot be reliable. Lastly, in light of the broad availability of modern finite element software, we also suggest to avoid the rigid indenter approximation, as it is shown to lead to unnecessary inaccuracies. All conclusions from the critical literature review performed lead to a new semi-analytical reverse analysis method, based on available dimensionless functions from the literature and a calibration against case specific finite element simulations. Implementations of the finite element model employed are released as supplementary material, for two major finite element software packages.


2017 ◽  
Vol 730 ◽  
pp. 548-553
Author(s):  
Jing Ge ◽  
Hao Jiang ◽  
Zhen Yu Sun ◽  
Guo Jun Yu ◽  
Bo Su ◽  
...  

In this paper, we establish the mechanical property analysis of Single-walled Carbon Nanotubes (SWCNTs) modified beam element model based on the molecular structural mechanics method. Then we study the mechanical properties of their radial direction characteristics using the finite element software Abaqus. The model simulated the different bending stiffness with rectangular section beam elements C-C chemical force field. When the graphene curled into arbitrary chirality of SWCNTs spatial structure, the adjacent beam position will change the moment of inertia of the section of the beam. Compared with the original beam element model and the calculation results, we found that the established model largely reduced the overestimate of the original model of mechanical properties on the radial direction of the SWCNTs. At the same time, compared with other methods available in the literature results and the experimental data, the results can be in good agreement.


2018 ◽  
Vol 29 (16) ◽  
pp. 3188-3198 ◽  
Author(s):  
Wissem Elkhal Letaief ◽  
Aroua Fathallah ◽  
Tarek Hassine ◽  
Fehmi Gamaoun

Thanks to its greater flexibility and biocompatibility with human tissue, superelastic NiTi alloys have taken an important part in the market of orthodontic wires. However, wire fractures and superelasticity losses are notified after a few months from being fixed in the teeth. This behavior is due to the hydrogen presence in the oral cavity, which brittles the NiTi arch wire. In this article, a diffusion-mechanical coupled model is presented while considering the hydrogen influences on the NiTi superelasticity. The model is integrated in ABAQUS finite element software via a UMAT subroutine. Additionally, a finite element model of a deflected orthodontic NiTi wire within three teeth brackets is simulated in the presence of hydrogen. The numerical results demonstrate that the force applied to the tooth drops with respect to the increase in the hydrogen amount. This behavior is attributed to the expansion of the NiTi structure after absorbing hydrogen. In addition, it is shown that hydrogen induces a loss of superelasticity. Hence, it attenuates the role of the orthodontic wire on the correction tooth malposition.


Sign in / Sign up

Export Citation Format

Share Document