scholarly journals Sports Parameter Acquisition Based on Internet of Things and Wavelet Analysis

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Hengming Chen ◽  
Junyong Li

In this study, a sports parameter acquisition model based on the internet of things and wavelet analysis is studied to improve the accuracy and timeliness of human sports parameter acquisition. A motion parameter acquisition model including a sensing layer, transmission layer, and application layer is designed. The acceleration sensor and temperature sensor in the information acquisition node in the sensing layer are used to collect the motion parameter data, which are uploaded to the application layer by the network in the transmission layer. The received data are denoised by the wavelet analysis method through the data processing unit in this layer and then sent to the ZigBee coordinator for coordination. The results show that the model can achieve the effective acquisition of different sports parameters of different moving objects and analyze the actual movement of moving objects according to the acquisition results. In the acquisition process, the signal burr can be effectively removed, the signal noise can be reduced, the high signal-to-noise ratio signal can be output, and the accuracy of acquisition is improved. It has high timeliness, stable performance, and strong practical application, which can provide an effective guarantee for users to monitor sports parameter data in real time.

2017 ◽  
Vol 13 (05) ◽  
pp. 80 ◽  
Author(s):  
Juanjuan Li

Traditional and inefficient agricultural production methods cannot meet the modern agriculture requirements of safe, high quality, efficiency and productivity. The technology of Internet of Things is introduced into the field of agriculture, and the agricultural industrialization and information technology has an unprecedented opportunity. The relevant literature is read, the actual scene is investigated and the needs of agricultural field monitoring are identified. In the meanwhile, the development trend of Internet of Things and facility agricultural monitoring system is analyzed and system performance indicators that meet the actual requirements are developed. Moreover, the overall program of the system is designed and the three-tier architecture of Internet of Things system based on sensor technology, wireless communication technology, and configuration monitoring technology is constructed. The structure of the three layers of the sensing layer, transmission layer and application layer is analyzed, and the greenhouse sensor intelligent management system based on Internet of Things is designed. The performance of the system is tested in the laboratory. The test items include remote monitoring effect, information acquisition precision and system overall coordination. The results showed that the system is reasonable, the structure is compact, the network layer is reliable, and the performance is stable. Meanwhile, the application layer is rich in functionality, the interface is beautiful, the data processing is intelligent and the operability is strong. As last, it is concluded that the system meets system design requirements and expected performance specifications.


2021 ◽  
Vol 40 (6) ◽  
pp. 460-463
Author(s):  
Lionel J. Woog ◽  
Anthony Vassiliou ◽  
Rodney Stromberg

In seismic data processing, static corrections for near-surface velocities are derived from first-break picking. The quality of the static corrections is paramount to developing an accurate shallow velocity model, a model that in turn greatly impacts the subsequent seismic processing steps. Because even small errors in first-break picking can greatly impact the seismic velocity model building, it is necessary to pick high-quality traveltimes. Whereas various artificial intelligence-based methods have been proposed to automate the process for data with medium to high signal-to-noise ratio (S/N), these methods are not applicable to low-S/N data, which still require intensive labor from skilled operators. We successfully replace 160 hours of skilled human work with 10 hours of processing by a single NVIDIA Quadro P6000 graphical processing unit by reducing the number of human picks from the usual 5%–10% to 0.19% of available gathers. High-quality inferred picks are generated by convolutional neural network-based machine learning trained from the human picks.


To control a specific device hardware switches and gesture based controls are usually used. There are some inconveniences involved in these controlling mechanism aging problem, safety related issues, high replacement cost in hardware switches and the impact of external noise in case of gesture based control. And in order to overcome these issues a new device control mechanism is brought up using two dimensional hologram and dynamic vision sensor. This involves reduced hardware usage and if needed, the controlling unit can be replaced easily. It possesses high processing efficiency and speed. The light source used in hologram processing unit is LED and it contributes less power consumption. The conventional proximity sensors are replaced by Dynamic vision sensor because the conventional sensors process series of frames continuously which is inefficient because it contains redundant information, wasting energy computational power and time. This drawback is eliminated by using DVS which starts to process the frames only when any change is sensed only at the time the change occurs. Proximity sensors are more prone to external noise whereas DVS is not. It has high signal to noise ratio.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Hui Guo ◽  
Xuejiao Guo ◽  
Chao Deng ◽  
Shangqing Zhao

This paper investigates the joint effects of in-phase and quadrature-phase imbalance (IQI) and imperfect successive interference cancellation (ipSIC) on the cooperative Internet of Things (IoT) nonorthogonal multiple access (NOMA) networks where the Nakagami-m fading channel is taken into account. The closed-form expressions of outage probability for the far and near IoT devices are derived to evaluate the outage behaviors. For deeper insights of the performance of the considered system, the approximate outage probability and diversity order in high signal-to-noise ratio (SNR) regime are obtained. In addition, we also analyze the throughput and energy efficiency to characterize the performance of the considered system. The simulation results demonstrate that, compared with IQI, ipSIC has a greater impact on the outage performance for the near-IoT-device of the considered system. Furthermore, we also find that the outage probabilities of IoT devices can be minimized by selecting a specific power allocation scheme.


2021 ◽  
Vol 2093 (1) ◽  
pp. 012033
Author(s):  
Yue Cao ◽  
Zaixin Liu ◽  
Longyu Wu

Abstract Contemporarily, the Internet of Things (IoT) is recently a newly emerging technology for connecting small devices into a platform; the IoT has been an increasingly demanded front-edge technology in terms of connecting different devices using information transmission and storage technology. To adapt to the small capacities of device batteries, Bluetooth Low Energy is adopted as the protocol of communication. However, the existing standards do not have a suitable and specific error correction method. As there is no ideal information transmission channel, there must be errors that occurred during message transmission. The performance and capacity of error correction become decisive factors in evaluating how efficient the IoT communication system performs. This article uses convolutional coding—a better-performing coding scheme than block coding—to correct errors in information transmission and reception on Internet of Things devices. It is better competent to control and correct bit errors in information transmission. To achieve this goal, convolutional coding algorithms devised by Dr Justin Coon at the University of Oxford have been referred to. By simulation using MATLAB, it has been found that the error rate is enhanced significantly for high Signal-to-Noise Ratio (SNR) in convolutional codes compared to uncoded messages.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 951-958
Author(s):  
Tianhao Liu ◽  
Yu Jin ◽  
Cuixiang Pei ◽  
Jie Han ◽  
Zhenmao Chen

Small-diameter tubes that are widely used in petroleum industries and power plants experience corrosion during long-term services. In this paper, a compact inserted guided-wave EMAT with a pulsed electromagnet is proposed for small-diameter tube inspection. The proposed transducer is noncontact, compact with high signal-to-noise ratio and unattractive to ferromagnetic tubes. The proposed EMAT is designed with coils-only configuration, which consists of a pulsed electromagnet and a meander pulser/receiver coil. Both the numerical simulation and experimental results validate its feasibility on generating and receiving L(0,2) mode guided wave. The parameters for driving the proposed EMAT are optimized by performance testing. Finally, feasibility on quantification evaluation for corrosion defects was verified by experiments.


2018 ◽  
Author(s):  
Satish Kodali ◽  
Liangshan Chen ◽  
Yuting Wei ◽  
Tanya Schaeffer ◽  
Chong Khiam Oh

Abstract Optical beam induced resistance change (OBIRCH) is a very well-adapted technique for static fault isolation in the semiconductor industry. Novel low current OBIRCH amplifier is used to facilitate safe test condition requirements for advanced nodes. This paper shows the differences between the earlier and novel generation OBIRCH amplifiers. Ring oscillator high standby leakage samples are analyzed using the novel generation amplifier. High signal to noise ratio at applied low bias and current levels on device under test are shown on various samples. Further, a metric to demonstrate the SNR to device performance is also discussed. OBIRCH analysis is performed on all the three samples for nanoprobing of, and physical characterization on, the leakage. The resulting spots were calibrated and classified. It is noted that the calibration metric can be successfully used for the first time to estimate the relative threshold voltage of individual transistors in advanced process nodes.


Nanophotonics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 2569-2576 ◽  
Author(s):  
Lu Li ◽  
Lihui Pang ◽  
Qiyi Zhao ◽  
Yao Wang ◽  
Wenjun Liu

AbstractTransition metal dichalcogenides have been widely utilized as nonlinear optical materials for laser pulse generation applications. Herein, we study the nonlinear optical properties of a VS2-based optical device and its application as a new saturable absorber (SA) for high-power pulse generation. Few-layer VS2 nanosheets are deposited on the tapered region of a microfiber to form an SA device, which shows a modulation depth of 40.52%. After incorporating the microfiber-VS2 SA into an Er-doped fiber laser cavity, passively Q-switched pulse trains could be obtained with repetition rates varying from 95 to 233 kHz. Under the pump power of 890 mW, the largest output power and shortest pulse duration are measured to be 43 mW and 854 ns, respectively. The high signal-to-noise ratio of 60 dB confirms the excellent stability of the Q-switching state. To the best of our knolowdge, this is the first illustration of using VS2 as an SA. Our experimental results demonstrate that VS2 nanomaterials have a large potential for nonlinear optics applications.


2021 ◽  
Vol 13 (1) ◽  
pp. 168781402098732
Author(s):  
Ayisha Nayyar ◽  
Ummul Baneen ◽  
Syed Abbas Zilqurnain Naqvi ◽  
Muhammad Ahsan

Localizing small damages often requires sensors be mounted in the proximity of damage to obtain high Signal-to-Noise Ratio in system frequency response to input excitation. The proximity requirement limits the applicability of existing schemes for low-severity damage detection as an estimate of damage location may not be known  a priori. In this work it is shown that spatial locality is not a fundamental impediment; multiple small damages can still be detected with high accuracy provided that the frequency range beyond the first five natural frequencies is utilized in the Frequency response functions (FRF) curvature method. The proposed method presented in this paper applies sensitivity analysis to systematically unearth frequency ranges capable of elevating damage index peak at correct damage locations. It is a baseline-free method that employs a smoothing polynomial to emulate reference curvatures for the undamaged structure. Numerical simulation of steel-beam shows that small multiple damages of severity as low as 5% can be reliably detected by including frequency range covering 5–10th natural frequencies. The efficacy of the scheme is also experimentally validated for the same beam. It is also found that a simple noise filtration scheme such as a Gaussian moving average filter can adequately remove false peaks from the damage index profile.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Francesco Giganti ◽  
Alex Kirkham ◽  
Veeru Kasivisvanathan ◽  
Marianthi-Vasiliki Papoutsaki ◽  
Shonit Punwani ◽  
...  

AbstractProstate magnetic resonance imaging (MRI) of high diagnostic quality is a key determinant for either detection or exclusion of prostate cancer. Adequate high spatial resolution on T2-weighted imaging, good diffusion-weighted imaging and dynamic contrast-enhanced sequences of high signal-to-noise ratio are the prerequisite for a high-quality MRI study of the prostate. The Prostate Imaging Quality (PI-QUAL) score was created to assess the diagnostic quality of a scan against a set of objective criteria as per Prostate Imaging-Reporting and Data System recommendations, together with criteria obtained from the image. The PI-QUAL score is a 1-to-5 scale where a score of 1 indicates that all MR sequences (T2-weighted imaging, diffusion-weighted imaging and dynamic contrast-enhanced sequences) are below the minimum standard of diagnostic quality, a score of 3 means that the scan is of sufficient diagnostic quality, and a score of 5 implies that all three sequences are of optimal diagnostic quality. The purpose of this educational review is to provide a practical guide to assess the quality of prostate MRI using PI-QUAL and to familiarise the radiologist and all those involved in prostate MRI with this scoring system. A variety of images are also presented to demonstrate the difference between suboptimal and good prostate MR scans.


Sign in / Sign up

Export Citation Format

Share Document