scholarly journals Research on the Controlling Effect of NPR Cables for Anti-Dip Slope Based on the Numerical Simulation

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xiaohu Zhang ◽  
Hongjian Wang ◽  
Zhigang Tao ◽  
Chun Zhu

As the scale and depth of mines increase, large deformations of high-steep slopes progressively become prominent. Compared with the ordinary cables, negative Poisson’s ratio (NPR) cables can provide a constant resistance force and high deformation inhibition during slope deformation, avoiding the occurrence of slope instability hazards. Consequently, the control effects on the toppling failures of slopes were necessary to be researched. Changshanhao open-pit gold mine was taken as an example; based on the field geological investigation and rock mechanics testing, a three-dimensional engineering geological model of open-pit mine was constructed. Subsequently, the stability of open pit in current situation and final boundary situation was estimated with FLAC3D software, for the potential slope vulnerable areas to be comprehensively identified. Finally, the control effects of ordinary cables and NPR cables on the instable W13 slope section were compared and studied through FLAC3D simulations, and the reinforcement effects of NPR cable on the anti-dip slope were proved as significant; meanwhile, the corresponding reinforcement methods in the failure mine areas were proposed, laying a reference for the instability failure control and reinforcement of similar anti-dip slopes.

2021 ◽  
Author(s):  
Vidal Félix Navarro Torres ◽  
Rodrigo Dockendorff ◽  
Juan Manuel Girao Sotomayor ◽  
Cristian Castro ◽  
Aristotelina Ferreira da Silva

Abstract It has historically been frequent among geotechnical practitioners, that the stability analysis of the slopes of an open pit is performed using a two dimensional section representing the highest and steepest walls within a certain geological setting. However, the literature shows that to predict rupture events in an open pit, a three-dimensional analysis would better represent the actual conditions, as the spatial distribution of the lithology and the structural features play an important role when defining the stability of the slopes. This paper presents the case study of an open it located in Brazil, which experienced instabilities between the years 2001-2019. An evaluation of the behavior of the open pit was performed by calibrating the strength parameters to represent the best documented rupture events. The three-dimensional model was made using the FLAC3D software. The results show that there is a good correlation between the results of the model and the reports of past instabilities. Finally, recommendations are presented for the inter-ramp angles for each lithology based on the calibrated stability analyzes performed. This work seeks to contribute to the knowledge in evaluation techniques for the three-dimensional behavior of open pits.


2021 ◽  
Vol 4 (2) ◽  
pp. p1
Author(s):  
Dyson Moses ◽  
Hideki Shimada ◽  
Takashi Sasaoka ◽  
Akihiro Hamanaka ◽  
Tumelo K. M Dintwe ◽  
...  

The investigation of the influence of in situ stress in Open Pit Mine (OPM) projects has not been accorded a deserved attention despite being a fundamental concern in the design of underground excavations. Hence, its long-term potential adverse impacts on pit slope performance are overly undermined. Nevertheless, in mines located in tectonically active settings with a potential high horizontal stress regime like the Songwe mine, the impact could be considerable. Thus, Using FLAC3D 5.0 software, based on Finite Difference Method (FDM) code, we assessed the role of stress regimes as a potential triggering factor for slope instability in Songwe mine. The results of the evaluated shearing contours and quantified strain rate and displacement values reveal that high horizontal stress can reduce the stability performance of the pit-wall in spite of the minimal change in Factor of Safety (FoS). Since mining projects have a long life span, it would be recommendable to consider “in situ stress-stability analyses” for OPM operations that would be planned to extend to greater depths and those located in tectonically active regions.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1681
Author(s):  
Yong Wang ◽  
Song-Tao Ni ◽  
Fa-Wu Yang ◽  
Zhong-Xin Wang ◽  
Hong Zhang ◽  
...  

The stability of open-pit mining is a hot issue in geotechnical engineering. A mining railroad is in operation on the slope where the east exhaust inclined shaft and the east sand injection inclined shaft on the Laohutai Mine are located, and it was necessary to determine whether railroad vibration would have an impact on the safety of the inclined shafts. With this project as the background, the dynamic response of the slope with inside two inclined shafts was conducted under train loading. A three-dimensional numerical model by using PLAXIS 3D was established to analyze the stability of the slope. The results show that the dynamic reaction caused by the full-loaded train is significantly greater than the no-load train. The safety factor of the slope under the dynamic load is 1.201, and the maximum displacement of the slope which occurred in the gravel layer directly beneath the train track is about 5 mm. The acceleration responses of the two inclined shafts are almost consistent. The maximum horizontal and vertical acceleration occur at the epidote weak layer. The acceleration directly below the load increases significantly. Therefore, it can be considered that the slopes are stable under the action of train vibration, and the influence on the two inclined shafts is small and negligible.


2011 ◽  
Vol 90-93 ◽  
pp. 342-346
Author(s):  
Bao Fu Duan ◽  
Meng Zhang ◽  
Yan Xin Lv ◽  
Cheng Bo Zhai ◽  
Xian He Weng

Slopes of open-pit mine and ash storage are likely to occur the geological disasters of landslides, collapse, ground deforms and so on, due to geological structure, mining activity, etc. Lai Zhou Power plant is going to use the open-pit of Cang Shang gold mine as the ash storage field. Therefore, the long-term stability of the slope is of great significance. Through the geological investigation and analysis of open-pit mine slope, the conditions of geological and tectonic are summarized. On the basis of field monitoring, the stability of the slope is analyzed in detail. The estimated results can better correspond to the actual stability of the open-pit slope. Feasible practical control scheme and monitoring program are put forward according to the engineering practice


2007 ◽  
Vol 353-358 ◽  
pp. 2537-2540
Author(s):  
An Nan Jiang

Shuibuya hydroelectric project is the most upstream power station in the Qingjiang cascade development of China. The power plant is designed as underground powerhouse, from seventh to eighth construction step, how to ensure the stability of surrounding rock mass of generator socket and controlling the displacement of lower side wall where the soft stratum located in is a key problem. To solve the problem, the three dimensional numerical model of the underground powerhouse was established based on the results of geological investigation. Then, the detailed construction processes, including the replacement of soft rock, excavation as well as support, were numerically simulated. In order to improve the simulation accuracy, the rock mechanics parameters were back analyzed based on in-situ monitor data before sixth construction step, then using Mohr-Coulomb criterion, the paper simulated and analyzed the damage zones of surrounding rock and displacement of lower side wall corresponding to different schemes. The best scheme was recommended by synthetically considering the stability indexes of each scheme. The study had a scientific meaning to guide Shuibuya project construction. Introduction When the underground cavern is excavated, the initial ground stress is released


Author(s):  
Abdelkrim Merah ◽  
Ridha Kelaiaia ◽  
Faiza Mokhtari

Abstract The Taylor-Couette flow between two rotating coaxial cylinders remains an ideal tool for understanding the mechanism of the transition from laminar to turbulent regime in rotating flow for the scientific community. We present for different Taylor numbers a set of three-dimensional numerical investigations of the stability and transition from Couette flow to Taylor vortex regime of a viscous incompressible fluid (liquid sodium) between two concentric cylinders with the inner one rotating and the outer one at rest. We seek the onset of the first instability and we compare the obtained results for different velocity rates. We calculate the corresponding Taylor number in order to show its effect on flow patterns and pressure field.


2019 ◽  
Vol 952 (10) ◽  
pp. 47-54
Author(s):  
A.V. Komissarov ◽  
A.V. Remizov ◽  
M.M. Shlyakhova ◽  
K.K. Yambaev

The authors consider hand-held laser scanners, as a new photogrammetric tool for obtaining three-dimensional models of objects. The principle of their work and the newest optical systems based on various sensors measuring the depth of space are described in detail. The method of simultaneous navigation and mapping (SLAM) used for combining single scans into point cloud is outlined. The formulated tasks and methods for performing studies of the DotProduct (USA) hand-held laser scanner DPI?8X based on a test site survey are presented. The accuracy requirements for determining the coordinates of polygon points are given. The essence of the performed experimental research of the DPI?8X scanner is described, including scanning of a test object at various scanner distances, shooting a test polygon from various scanner positions and building point cloud, repeatedly shooting the same area of the polygon to check the stability of the scanner. The data on the assessment of accuracy and analysis of research results are given. Fields of applying hand-held laser scanners, their advantages and disadvantages are identified.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1510 ◽  
Author(s):  
Mohammad Ehsan Taghavizadeh Yazdi ◽  
Simin Nazarnezhad ◽  
Seyed Hadi Mousavi ◽  
Mohammad Sadegh Amiri ◽  
Majid Darroudi ◽  
...  

The use of naturally occurring materials in biomedicine has been increasingly attracting the researchers’ interest and, in this regard, gum tragacanth (GT) is recently showing great promise as a therapeutic substance in tissue engineering and regenerative medicine. As a polysaccharide, GT can be easily extracted from the stems and branches of various species of Astragalus. This anionic polymer is known to be a biodegradable, non-allergenic, non-toxic, and non-carcinogenic material. The stability against microbial, heat and acid degradation has made GT an attractive material not only in industrial settings (e.g., food packaging) but also in biomedical approaches (e.g., drug delivery). Over time, GT has been shown to be a useful reagent in the formation and stabilization of metal nanoparticles in the context of green chemistry. With the advent of tissue engineering, GT has also been utilized for the fabrication of three-dimensional (3D) scaffolds applied for both hard and soft tissue healing strategies. However, more research is needed for defining GT applicability in the future of biomedical engineering. On this object, the present review aims to provide a state-of-the-art overview of GT in biomedicine and tries to open new horizons in the field based on its inherent characteristics.


Sign in / Sign up

Export Citation Format

Share Document