scholarly journals Calculation Method for the Critical Thickness of a Karst Cave Roof at the Bottom of a Socketed Pile

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Nie Qingke ◽  
Li Xilai ◽  
Yuan Wei ◽  
Wang Anli ◽  
Wang Wei ◽  
...  

The thickness of a karst cave roof at the bottom of a socketed pile plays an important role in the vertical bearing capacity of the socketed pile in the karst region. In practice, its thickness is simply recommended to be not less than 3 times the diameter of the socketed pile, regardless of the geological conditions and the size of the cave itself. In this study, we present an approach for calculating the critical thickness-to-diameter ratio of a karst cave roof η (η = h/d, the ratio of karst cave roof thickness to pile diameter) based on the generalized Hoek–Brown criterion by virtue of the limit analysis method, which considers the pile tip load, hardness degree of the intact rock, and rock mass quality. The analysis results show that less load at the bottom of the pile, higher quality of rock mass, and more hard rock all lead to a smaller critical thickness-diameter ratio, whereas the critical thickness-to-diameter ratio is greater. The validity of the proposed method is verified through a physical model test.

2011 ◽  
Vol 90-93 ◽  
pp. 2363-2371
Author(s):  
Bin Wei Xia ◽  
Ke Hu ◽  
Yi Yu Lu ◽  
Dan Li ◽  
Zu Yong Zhou

Physical models of layered rock mass with different dip angles are built by physical model test in accordance with the bias failure characteristics of surrounding rocks of layered rock mass in Gonghe Tunnel. Bias failure characteristics of surrounding rocks in thin-layered rock mass and influences of layered rock mass dip angle on stability of tunnel are studied. The research results show that failure characteristics of physical models generally coincide with those of surrounding rocks monitored from the tunnel site. The failure regions of surrounding rock perpendicular to the stratification planes are obviously larger than those parallel to. The stress distributions and failure characteristics in the surrounding rocks are similar to each physical model of different dip angles. The stress distributions and failure regions are all elliptic in shape, in which the major axis is in the direction perpendicular to the stratification planes while the minor axis is parallel to them. As a result, obvious bias failure of surrounding rocks has gradually formed. The physical model tests provide reliable basis for theoretical analysis on the failure mechanism of deep-buried layered rock mass.


2018 ◽  
Vol 41 ◽  
pp. 01007
Author(s):  
Yuriy Kutepov ◽  
Aleksandr Mironov ◽  
Maksim Sablin ◽  
Elena Borger

This article considers mining and geological conditions of the site “Blagodatny” of the mine named after A.D. Ruban located underneaththe old open pit coal mine and the hydraulic-mine dump. The potentially dangerous zones in the undermined rock mass have been identified based onthe conditions of formation of water inflow into mine workings. Safe depthof coal seams mining has been calculated depending on the type of water body – the hydraulic-mine dump.


2018 ◽  
Vol 29 ◽  
pp. 00006 ◽  
Author(s):  
Dawid Szurgacz ◽  
Jaroław Brodny

A powered roof support is a machine responsible for protection of an underground excavation against deformation generated by rock mass. In the case of dynamic impact of rock mass, the proper level of protection is hard to achieve. Therefore, the units of the roof support and its components are subject to detailed tests aimed at acquiring greater reliability, efficiency and efficacy. In the course of such test, however, it is not always possible to foresee values of load that may occur in actual conditions. The article presents a case of a dynamic load impacting the powered roof support during a high-energy tremor in an underground hard coal mine. The authors discuss the method for selecting powered roof support units proper for specific forecasted load conditions. The method takes into account the construction of the support and mining and geological conditions of an excavation. Moreover, the paper includes tests carried out on hydraulic legs and yield valves which were responsible for additional yielding of the support. Real loads impacting the support unit during tremors are analysed. The results indicated that the real registered values of the load were significantly greater than the forecasted values. The analysis results of roof support operation during dynamic impact generated by the rock mass (real life conditions) prompted the authors to develop a set of recommendations for manufacturers and users of powered roof supports. These include, inter alia, the need for innovative solutions for testing hydraulic section systems.


2020 ◽  
Vol 10 (11) ◽  
pp. 3937
Author(s):  
Guang Li ◽  
Fengshan Ma ◽  
Jie Guo ◽  
Haijun Zhao

Deformation failure and support methods of roadways have always been critical issues in mining production and safety, especially for roadways buried in complex engineering geological conditions. To resolve these support issues of kilometer-depth roadways under high ground stress and broken rock mass, a case study on the roadways in the No. 2 mining area of Jinchuan Mine, China, is presented in this paper. Based on a detailed field survey, the deformation characteristics of the roadways and failure modes of supporting structures were investigated. It was found that the horizontal deformations were serious, and the primary support was not able to control the surrounding rock well. Additionally, a broken rock zone test was carried out, which indicated that a zonal disintegration phenomenon occurred around the roadways and the maximum depth of the fractured zone was more than 4.8 m. In order to effectively limit the deformation in the roadways, a new support scheme called the “multistage anchorage + concrete-filled steel tube” was put forward. To further assess the support behavior of the new method, we selected a test roadway in the research area, and numerical simulations and in-situ monitoring were conducted. The findings suggest that the roadway’s serious deformation under high ground stress and broken rock mass could be successfully controlled by the new control method, which can provide a reference for other engineering solutions under similar geological conditions.


2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Meng Wang ◽  
Jia-wen Zhou ◽  
An-chi Shi ◽  
Jin-qi Han ◽  
Hai-bo Li

The stability of the surrounding rock masses of underground powerhouses is always emphasized during the construction period. With the general trends toward large-scale, complex geological conditions and the rapid construction progress of underground powerhouses, deformation and failure issues of the surrounding rock mass can emerge, putting the safety of construction and operation in jeopardy and causing enormous economic loss. To solve these problems, an understanding of the origins and key affecting factors is required. Based on domestic large-scale underground powerhouse cases in the past two decades, key factors affecting the deformation and failure of the surrounding rock mass are summarized in this paper. Among these factors, the two most fundamental factors are the rock mass properties and in situ stress, which impart tremendous impacts on surrounding rock mass stability in a number of cases. Excavation is a prerequisite of surrounding rock mass failure and support that is classified as part of the construction process and plays a pivotal role in preventing and arresting deformation and failure. Additionally, the layout and structure of the powerhouse are consequential. The interrelation and interaction of these factors are discussed at the end of this paper. The results can hopefully advance the understanding of the deformation and failure of surrounding rock masses and provide a reference for design and construction with respect to hydroelectric underground powerhouses.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Peisen Wang ◽  
Hongyan Ding ◽  
Puyang Zhang

The differences in development and situation of karst caves lead to two kinds of karst caves, and the karst cave may be on the pile side or at the pile bottom, which has a different influence on the bearing capacity of pile foundation. The paper presents a numerical analysis of the influence of karst caves at pile side on the bearing capacity of super-long pile foundation in karst areas. According to the size of pile foundation of a real bridge project, this paper modelized karst caves and investigated the karst cave from the effect of length, height, and thickness of roof on horizontal and vertical bearing capacity of pile foundation. The main conclusions can be drawn as: when the horizontal displacement at the top of pile foundation is greater than 0.05 m, the horizontal load is correlated positively with the length of karst cave; when the vertical displacement is greater than 0.07 m, the vertical load is correlated negatively with the thickness of the roof of karst cave. However, the height of karst cave has little effect on the bearing capacity; also the existence of karst cave has little influence on the dynamic response of pile foundation. The results of this study can be important with reference to the design and construction of pile foundations in karst areas.


2013 ◽  
Vol 353-356 ◽  
pp. 1325-1328 ◽  
Author(s):  
Xiao Jun Zhou ◽  
Chang Yu Yang

Structural design and construction process for a subway station consists of two tunnels with large transection are discussed according to its function and geological conditions of rock mass in this paper. A composite lining is designed to support surrounding rock, and partial bench cut method, side drift method are utilized to build the special subway transfer station in rock mass. The practice of the designed scenario proves to be a great success and attains the safe construction of the station by tunneling method.


2013 ◽  
Vol 639-640 ◽  
pp. 688-693
Author(s):  
Jin Yi ◽  
Guo Jing He ◽  
Si Si Liu ◽  
Zhi Yong Li ◽  
Zu En Zheng

This paper introduced construction method for deep pile of Zishui bridge through karst region and the checking results of the pile bearing capacity. Firstly, main structure of Zishui bridge was simply introduced. Secondly, according to the special geological conditions, construction methods for bored piles in water and drilling platform were described. The discussion focused on the problem of boring and grouting in karst foundation and their solutions. Finally, to ensure that the pile capacity can meet the design requirements, load transfer method was used on the part of pile foundation to calculate the bearing capacity. Results showed that pile bearing capacity meet the requirements, and the feasibility and correctness of construction method of Zishui bridge was also verified,which provides references for the design and construction of the same civil engineering.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Haoran Hu ◽  
Wenbo Lu ◽  
Peng Yan ◽  
Ming Chen ◽  
Qidong Gao

Under complicated geological conditions, the vibration in the dam foundation caused by blasting can lead to further deterioration of the foundation rock mass and adversely affect the safety of foundation. In order to effectively control the vibration in dam foundation rock mass, a new bench blasting technique with shock-reflection device is proposed. It introduces a shock-reflection device consisting of high wave impedance block and cushion material, which is placed at the bottom of vertical borehole. This shock-reflection device can effectively reflect the explosion shock wave from vertical direction to horizontal direction after detonation, which can make blasting energy concentrated on the rock mass above dam foundation, so the vibration in the foundation can be controlled. Field blasting experiment was carried out to contrast the blasting induced vibration in foundation rock by bench blasting with shock-reflection device and conventional bench blasting. The results indicate that the vibration in the foundation rock can be reduced by 30%~57%. In addition, the vibration at the bottom of the borehole is also demonstrated by numerical simulation, with results similar to the field experiments. The production experiment results show that the new blasting technique can replace the conventional excavation method of dam foundation in complicated geological conditions, and the new blasting technique has been successfully applied to the Baihetan dam foundation excavation.


2015 ◽  
Vol 777 ◽  
pp. 135-142
Author(s):  
Hong Liang Deng ◽  
Sheng Lin Wu ◽  
Shu Xiang Guo ◽  
Li Bin Ma ◽  
Yang Guo

More and more construction of tunnel engineering in karst region. Karst influence on tunnel engineering in deformation and instability, it often leading to Partial collapse, impellers, rock fall in the tunnel excavation or after work. For through large Karst cave tunnel, it will give great harm to tunnel, adjacent structures and injuries and consequence is very serious when faced with karst collapse occurs. The paper is based on engineering example of XieGiadong cave tunnel, the research results has important value for engineering construction and protection of resources. For example, the tunnel lining structure under the action of impact load produced large deformation and the overall shear failure and the process is ephemeral. Tunnel in the process of impact contact to destroy only less than 0.1 S, The vertical displacement of 2.88 m, the horizontal displacement of 0.8 m, fall since the collapse of rock mass to the maximum contact force of the contact with the tunnel 7000000KN.


Sign in / Sign up

Export Citation Format

Share Document