scholarly journals Analysis of Ethanol to Reduce Solid Particle Pollution in SI Engines

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
P. Sivaprakasam ◽  
P. Maheandera Prabu ◽  
M. Srinivasan ◽  
S. Balakrishnan ◽  
V. S. Karthikeyan ◽  
...  

The present work carries out an experimental comparative analysis of the performance and emission of exhaust gases of the Otto cycle with four automotive times. The comparison was made between alternative fuels such as E10, E15, and E20, with both 90 and 95 octane each the commercialized fuel. The experimental tests were carried out with an engine load corresponding to 25% of the maximum load. After carrying out the tests, the following conclusions can be reached: on the performance and effective parameters of the engine, the obtained best indicator, and as expected, was the case E10 (90 octane). Also, the E15 (90 octane) showed a slight difference compared to the reference fuel E10 (90 octane). About emissions, it was found that these decrease as the concentration of ethanol in the fuel increases.

2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110209
Author(s):  
Zain Ul Hassan ◽  
Muhammad Usman ◽  
Muhammad Asim ◽  
Ali Hussain Kazim ◽  
Muhammad Farooq ◽  
...  

Despite a number of efforts to evaluate the utility of water-diesel emulsions (WED) in CI engine to improve its performance and reduce its emissions in search of alternative fuels to combat the higher prices and depleting resources of fossil fuels, no consistent results are available. Additionally, the noise emissions in the case of WED are not thoroughly discussed which motivated this research to analyze the performance and emission characteristics of WED. Brake thermal efficiency (BTE) and brake specific fuel consumption (BSFC) were calculated at 1600 rpm within 15%–75% of the load range. Similarly, the contents of NOx, CO, and HC, and level of noise and smoke were measured varying the percentage of water from 2% to 10% gradually for all values of loads. BTE in the case of water emulsified diesel was decreased gradually as the percentage of water increased accompanied by a gradual increase in BSFC. Thus, WED10 showed a maximum 13.08% lower value of BTE while BSFC was increased by 32.28%. However, NOx emissions (21.8%) and smoke (48%) were also reduced significantly in the case of WED10 along with an increase in the emissions of HC and CO and noise. The comparative analysis showed that the emulsified diesel can significantly reduce the emission of NOx and smoke, but it has a negative impact on the performance characteristics and HC, CO, and noise emissions which can be mitigated by trying more fuels variations such as biodiesel and using different water injection methods to decrease dependency on fossil fuels and improve the environmental impacts of CI engines.


2015 ◽  
Vol 787 ◽  
pp. 751-755
Author(s):  
P. Vithya ◽  
V. Logesh

The use of fossil fuel is increasing drastically due to its consumption in all consumer activities. The utility of fossil fuel depleted its existence, degraded the environment and led to reduction in underground carbon resources. Hence the search for alternative fuels is paying attention for making sustainable development, energy conservation, efficiency and environmental preservation. The worldwide reduction of underground carbon resources can be substituted by the bio-fuels. The researchers around the world are finding the alternate fuel that should have the least impact on the environment degradation. This paper aims at finding an alternative for diesel and reducing the pressure on its existing demand. This study aimed at using two types of oil mixtures namely cashew nut shell oil and camphor oil mixed with diesel, turpentine oil mixed with diesel in different proportions as fuel in twin cylinder four stroke diesel engine. Performance and emission analysis have been performed by using exhaust gas analyzer in the oil samples. It was observed that 40% cashew nut shell oil and 10%camphor oil mixed with 50% diesel, 50% turpentine oil mixed with 50% diesel shows the better engine performance and also less emissions.


2015 ◽  
Vol 4 (1) ◽  
pp. 1-10 ◽  
Author(s):  
D.N. Basavarajappa ◽  
N. R. Banapurmath ◽  
S.V. Khandal ◽  
G. Manavendra

For economic and social development of any country energy is one of the most essential requirements. Continuously increasing price of crude petroleum fuels in the present days coupled with alarming emissions and stringent emission regulations has led to growing attention towards use of alternative fuels like vegetable oils, alcoholic and gaseous fuels for diesel engine applications. Use of such fuels can ease the burden on the economy by curtailing the fuel imports. Diesel engines are highly efficient and the main problems associated with them is their high smoke and NOx emissions.  Hence there is an urgent need to promote the use of alternative fuels in place of high speed diesel (HSD) as substitute. India has a large agriculture base that can be used as a feed stock to obtain newer fuel which is renewable and sustainable. Accordingly Uppage oil methyl ester (UOME) biodiesel was selected as an alternative fuel. Use of biodiesels in diesel engines fitted with mechanical fuel injection systems has limitation on the injector opening pressure (300 bar). CRDI system can overcome this drawback by injecting fuel at very high pressures (1500-2500 bar) and is most suitable for biodiesel fuels which are high viscous. This paper presents the performance and emission characteristics of a CRDI diesel engine fuelled with UOME biodiesel at different injection timings and injection pressures. From the experimental evidence it was revealed that UOME biodiesel yielded overall better performance with reduced emissions at retarded injection timing of -10° BTDC in CRDI mode of engine operation.


Currently the Biggest threat to environment and public health is Air Pollution which is caused by emissions of hydrocarbons, nitrogen oxides, carbon oxides and sulphur oxides by burning of fossil fuels. In recent years consumption of fossil fuels by various factories has rapidly increased that has let for the search of alternative fuels. These fuels are also known as non-conventional fuels which can be used as a substitute for conventional fuels Algae oil is one of the promising potential sources of bio-fuels generated from microbes. It is generally preferred because it is sustainable and environment-friendly oil which have numerous advantages. So the algae oil has used for performance and emission test on a diesel engine. The blends have been made for testing B5, B10. In which 5% of methanol has mixed and others are raw algae oil (5% for B5 and 10% for B10) and Diesel (90% for B5 and 85% for B10). The Kirlosker Engine with 6.97 HP (5.2KW)@1500rpm is used for Performance analyzing. Parallels AVL emission analyzer and smoke detector were connected with the exhaust of the engine. All values of gases were displayed and compared.


Author(s):  
Shyamsundar Rajaraman ◽  
G. K. Yashwanth ◽  
T. Rajan ◽  
R. Siva Kumaran ◽  
P. Raghu

World at present is confronted with the twin crisis of fossil fuel depletion and environmental pollution. Rapid escalation in prices and hydrocarbon resources depletion has led us to look for alternative fuels, which can satisfy ever increasing demands of energy as well as protect the environment from noxious pollutants. In this direction an attempt has been made to study a biodiesel, namely Moringa Oil Methyl Esters [MOME]. All the experiments were carried out on a 4.4 kW naturally aspirated stationary direct injection diesel engine coupled with a dynamometer to determine the engine performance and emission analysis for MOME. It was observed that there was a reduction in HC, CO and PM emissions along with a substantial increase in NOx. MOME and its blends had slightly lower thermal efficiency than diesel oil.


2013 ◽  
Vol 415 ◽  
pp. 126-131
Author(s):  
M. Shafik ◽  
L. Makombe

This paper presents a rotary standing wave ultrasonic motor using single flexural vibration ring transducer. The motor consists of three main components, the stator, rotor and housing unit. The stator is a piezoelectric transducer ring. The rotor is designed of a compact driving wheel and shaft. The housing unit is made of a transparent thermoplastic Perspex material and is part of the motor working mechanism. The motor design, structure, working principles and modelling using finite element analysis is discussed and presented in this paper. A prototype of the motor was fabricated and its characteristics measured. Experimental tests showed that the motor electrical working parameters are: Current: 100 m-amps, Voltage: 100 volts, Frequency: 41.7 kHz, typical speed of 32 revolutions per minute, a resolution of less than 50μm and maximum load of 1.5 Newton.


Sign in / Sign up

Export Citation Format

Share Document