scholarly journals Study on Soil Spring Model for Pipe and Silty Clay Interaction Based on Physical Model Test

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Liyun Li ◽  
Junyan Han ◽  
Xiangjian Wang

The previous soil spring model cannot describe the nonlinear characteristics of soil in elastic stage, and there are some shortcomings in the selection of soil spring parameters in some published codes. Meanwhile, the literatures about the spring model for pipe and silty clay interaction are rare. Thus, a series of pipe-silty clay interaction tests are conducted, and some corresponding experimental results are obtained. The effects of soil properties, pipe diameter, and embedment depth on the horizontal resistance of soil are studied. Based on the experimental results, the failure modes of soil are analysed, and a formula to calculate the peak resistance of soil and the corresponding displacement to peak resistance are proposed. Finally, a method to describe the nonlinear spring stiffness coefficient of silty clay is recommended.

2006 ◽  
Vol 129 (2) ◽  
pp. 293-303 ◽  
Author(s):  
Gerald T. Cashman

Elevated temperature data for powder metallurgy alloy René 95 generated in vacuum are presented to demonstrate that the life differences observed between surface and internally initiated failures are due to an environmental effect. The transition in behavior from a mode at low stress dominated by internal initiations to a surface dominated mode at high stress is quantitatively described in terms of both a weakest-link model and a local strain relationship. A fatigue failure mechanism is provided that explains that the natural selection of initiation site is based upon the concept that the site displaying the highest local cyclic plastic strain is the location where fatigue initiates.


2007 ◽  
Vol 347 ◽  
pp. 193-198 ◽  
Author(s):  
Simon P. Shone ◽  
Brian R. Mace ◽  
Tim P. Waters

The wave reflection coefficients of damage such as cracks, notches and slots in otherwise uniform beams depend on frequency and on the size of the damage. Experimental results are presented for the wave power reflection coefficients of transverse slots of various depths sawn into a number of beam specimens. These results are compared with a conventional spring model to estimate the depth of the slot. The method appears to work well for larger slot depths (greater than about 30% of the thickness of the beam) and at higher frequencies, allowing their existence to be inferred and their size to be estimated. This is due to the fact that the reflection coefficients are larger in these regimes. For smaller slots or at low frequencies, noise and experimental errors, such as miscalibration errors and ill-conditioning, become more significant.


2015 ◽  
Vol 3 (4) ◽  
pp. 365-373 ◽  
Author(s):  
Dabin Zhang ◽  
Jia Ye ◽  
Zhigang Zhou ◽  
Yuqi Luan

Abstract In order to overcome the problem of low convergence precision and easily relapsing into local extremum in fruit fly optimization algorithm (FOA), this paper adds the idea of differential evolution to fruit fly optimization algorithm so as to optimizing and a algorithm of fruit fly optimization based on differential evolution is proposed (FOADE). Adding the operating of mutation, crossover and selection of differential evolution to FOA after each iteration, which can jump out local extremum and continue to optimize. Compared to FOA, the experimental results show that FOADE has the advantages of better global searching ability, faster convergence and more precise convergence.


Author(s):  
Zhiao Zhao ◽  
Yong Zhang ◽  
Guanjun Liu ◽  
Jing Qiu

Sample allocation and selection technology is of great significance in the test plan design of prognostics validation. Considering the existing researches, the importance of prognostics samples of different moments is not considered in the degradation process of a single failure. Normally, prognostics samples are generated under the same time interval mechanism. However, a prognostics system may have low prognostics accuracy because of the small quantity of failure degradation and measurement randomness in the early stage of a failure degradation process. Historical degradation data onto equipment failure modes are collected, and the degradation process model based on the multi-stage Wiener process is established. Based on the multi-stage Wiener process model, we choose four parameters to describe different degradation stages in a degradation process. According to four parameters, the sample selection weight of each degradation stage is calculated and the weight of each degradation stage is used to select prognostics samples. Taking a bearing wear fault of a helicopter transmission device as an example, its degradation process is established and sample selection weights are calculated. According to the sample selection weight of each degradation process, we accomplish the prognostics sample selection of the bearing wear fault. The results show that the prognostics sample selection method proposed in this article has good applicability.


2020 ◽  
Vol 17 (12) ◽  
pp. 1399-1411
Author(s):  
Monthian SETKIT ◽  
Thanongsak IMJAI ◽  
Udomvit CHAISAKULKIET ◽  
Reyes GARCIA ◽  
Komsan DANGYEM ◽  
...  

This article investigates the behaviour of low-strength reinforced concrete beams under pure torsion with and without strengthening. Four beams were cast and tested in torsion: i) a control beam without vertical reinforcement, ii) two beams with internal stirrups designed for shear and torsion demands using different stirrup spacing (50 and 100 mm), and iii) a beam having steel stirrups with a spacing of 100 mm strengthened using high ductile post-tensioned metal straps (PTMS). The main objective of the PTMS strengthening solution was to investigate the enhancement of torsional strength confined along the beam. The failure modes, torsional capacities, rotation, and strengthening performance in torsion are discussed in in this study. The experimental results indicate that the PTMS improved the cracking torque capacity by up to 15 % compared to the control beam. Moreover, the PTMS also increased the ultimate torque by up to 19 % compared to the unstrengthened beam. Current code equations to predict the torsional capacity of RC beams are also compared with the experimental results. It is found that the predictions obtained by current ACI equation gives a good agreement and yield in general conservative values compared to the experimental ones.


Author(s):  
N Jones ◽  
S E Birch ◽  
R S Birch ◽  
L Zhu ◽  
M Brown

This report presents some experimental data that were recorded from 130 impact tests on mild steel pipes in two drop hammer rigs. The pipes were fully clamped across a span which was ten times the corresponding outside pipe diameters which lie between 22 and 324 mm. All of the pipes except five had wall thicknesses of 2 mm approximately and were impacted laterally by a rigid wedge indenter at the mid span, one-quarter span or near to a support. The impact velocities ranged up to 14 m/s and caused various failure modes. Some comparisons between two sets of experimental results indicate that the laws of geometrically similar scaling are almost satisfied over a scale range of approximately five.


2010 ◽  
Vol 3 (2) ◽  
pp. 47-60
Author(s):  
Alexey V. Starov

In this paper, analysis of existing methods application of criterial description of ignition conditions and combustion break-out for summarizing of experimental results is carried out. Experimental results are obtained at investigations of hydrogen combustion in combustor with high supersonic speed of airflow. For these conditions selection of several criterions was substantiated and they have a good agreement with new experimental results. At the same time complexity of determination of experimental physical parameters, which are included in criterions, do not allow confidently to apply them for prediction of steady-state combustion limits. Therefore further accumulation of experimental data and development of measurement methods are necessary for accurate criterions obtaining.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Xudong Zhao ◽  
Li Tan ◽  
Fubin Zhang

The traditional composite sandwich structures have disadvantages of low shear modulus and large deformation when used in civil engineering applications. To overcome these problems, this paper proposed a novel composite sandwich panel with upper and lower GFRP skins and a hybrid polyurethane (PU) foam core (GHP panels). The hybrid core is composed of different densities (150, 250, and 350 kg/m3) of the foam core which is divided functionally by horizontal GFRP ribs. The hard core is placed in the compression area to resist compressive strength and improve the stiffness of the composite sandwich structure, while the soft core is placed in the tension area. Six GHP panels were tested loaded in 4-point bending to study the effect of horizontal ribs and hybrid core configurations on the stiffness, strength, and failure modes of GHP panels. Experimental results show that compared to the control panel, a maximum of 54.6% and 50% increase in the strength and bending stiffness can be achieved, respectively. GHP panels with the hybrid PU foam core show obvious secondary stiffness. Finally, analytical methods were proposed to predict the initial stiffness and peak load of the GHP panels, and the results agree well with experimental results.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Ziqi Jia ◽  
Ling Song

The k-prototypes algorithm is a hybrid clustering algorithm that can process Categorical Data and Numerical Data. In this study, the method of initial Cluster Center selection was improved and a new Hybrid Dissimilarity Coefficient was proposed. Based on the proposed Hybrid Dissimilarity Coefficient, a weighted k-prototype clustering algorithm based on the hybrid dissimilarity coefficient was proposed (WKPCA). The proposed WKPCA algorithm not only improves the selection of initial Cluster Centers, but also puts a new method to calculate the dissimilarity between data objects and Cluster Centers. The real dataset of UCI was used to test the WKPCA algorithm. Experimental results show that WKPCA algorithm is more efficient and robust than other k-prototypes algorithms.


Author(s):  
Xiaoni Wu ◽  
Yean Khow Chow ◽  
Chun Fai Leung

Prediction of trajectory of drag anchor is important for the design and selection of drag anchor. Prediction based on yield envelope characterizing the anchor behavior under combined loading provides a promising method. However, the existing application of the yield envelope method ignores the effect of the fluke inclination angle by assuming a horizontally placed anchor fluke. This study aims to investigate the behavior of inclined fluke, which is the practical case during installation. The effects of the fluke inclination angle and embedment depth ratio on the anchor behavior in uniform clay under unidirectional loading and combined loading are investigated. It is found that the effect of the fluke inclination angle on the unidirectional capacity factors is mainly for anchor with embedment depth ratio less than 3. This results in the large difference of the size of the yield envelopes for fluke with same smaller embedment depth ratio but different fluke inclination angle, while the effect is minor on the shape of the yield envelope for such cases. However, there is large difference in the shape and size of the shallow yield envelopes for fluke with different embedment depth ratios and inclination angles.


Sign in / Sign up

Export Citation Format

Share Document