scholarly journals Continuous Differential Microemulsion Polymerization to Prepare Nanosized Polymer Latices in Microreactors

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Min Qiu ◽  
Liang Xiang ◽  
Minjing Shang ◽  
Yuanhai Su

Microreactors are a promising platform for continuous synthesis of polymer latices when combined with emulsion polymerization. However, this application has long been haunted by fouling and clogging problems. In this work, we proposed the strategy of conducting differential microemulsion polymerization in microreactors within a biphasic slug flow and achieved rapid and stable preparation of nanosized PMMA latices (polymeric content as high as 15.7% with average particle size smaller than 20 nm). We started by exploring the temperature thresholds with thermal and redox initiation, the effect of initiator concentration, and the kinetic characteristics of microemulsion polymerization at different temperatures. Then, as for the differential microemulsion polymerization, extensive investigation was made into the effects of the volumetric flow ratio, the prepolymerization time, the initiator concentration, and the solid content of the initial microemulsion. Finally, we compared the differential microemulsion polymerization with the soap-free emulsion polymerization in the slug flow. The striking advantages in the polymerization rate, the average particle diameter, and the size distribution reflected higher density of particle nuclei, larger specific surface area of particles, and the pivotal effect of the persistent particle nucleation in the microemulsion polymerization.

Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1548
Author(s):  
Peng Zhu ◽  
Huapeng Zhang ◽  
Hongwei Lu

The droplet evaporation effect on the preparation of polyetherimide (PEI) nanoparticles by thermally induced phase separation (TIPS) was studied. PEI nanoparticles were prepared in two routes. In route I, the droplet evaporation process was carried out after TIPS. In route II, the droplet evaporation and TIPS processes were carried out simultaneously. The surface tension and shape parameters of samples were measured via a drop shape analyzer. The Z-average particle diameter of PEI nanoparticles in the PEI/dimethyl sulfoxide solution (DMSO) suspension at different time points was tested by dynamic light scattering, the data from which was used to determine the TIPS time of the PEI/DMSO solution. The natural properties of the products from both routes were studied by optical microscope, scanning electron microscope and transmission electron microscope. The results show that PEI nanoparticles prepared from route II are much smaller and more uniform than that prepared from route I. Circulation flows in the droplet evaporation were indirectly proved to suppress the growth of particles. At 30 °C, PEI solid nanoparticles with 193 nm average particle size, good uniformity, good separation and good roundness were obtained. Route I is less sensitive to temperature than route II. Samples in route I were still the accumulations of micro and nanoparticles until 40 °C instead of 30 °C in route II, although the particle size distribution was not uniform. In addition, a film structure would appear instead of particles when the evaporation temperature exceeds a certain value in both routes. This work will contribute to the preparation of polymer nanoparticles with small and uniform particle size by TIPS process from preformed polymers.


2000 ◽  
Author(s):  
J. Jiang ◽  
Y. Hao ◽  
Y.-X. Tao

Abstract To improve the understanding of convective melting of packed solid particles in a fluid, an experimental investigation is conducted to study the melting characteristics of a packed bed by unmasking the buoyancy forces due to the density difference between the melt and solid particles. A close-loop apparatus, named the particle-melting-in-flow (PMF) module, is designed to allow a steady state liquid flow under a specified temperature. The module is on board NASA’s KC-135 reduced gravity aircraft for the experiments. In the test module, water is used as the fluid, and ice particles are fed to the test section at the beginning of the test. As the liquid flows though the bed, the solid grains melt. A perforate plate, through which liquid can flow while the ice particles are retained, bounds the downstream of the packed bed. From the digital video images the local packed bed thickness is measured under control flow rate, and the melting rate is determined. The temperature distribution along the horizontal direction and vertical direction is measured using 19 thermocouples. An infrared camera is mounted to record the local temperature variation between liquid and solid. The melting rates are presented as a function of upstream flow velocity, temperature and initial average particle size of the packed bed. It is found that the melting rate is influenced mainly by the ratio of the Reynolds number (Re, based on the initial particle diameter) to the square of the Froud number (Fr), and me Stefan number (Ste). In general, the dimensionless melting rate decreases as Re/Fr2 increases and increases as Ste increases. With the absence of gravity, i.e., Froud number approaches infinity, a maximum melting rate can be achieved for otherwise the same test conditions. The increase in the melting rate with the increase in Stephan number also becomes more pronounced under the zero gravity condition.


2014 ◽  
Vol 989-994 ◽  
pp. 611-614
Author(s):  
Ling Li ◽  
Wen Ming Zhang ◽  
Hua Yan Zhang ◽  
Zi Hao Xu ◽  
Sen Wang ◽  
...  

Vanadium/iron co-doped nanoTiO2 transparent hydrosol with an average particle size of 3.8 nm was synthesized by a novel complexation-controlled hydrolysis method at room temperature and atmospheric pressure by using TiCl4, ferric nitrate, ammonium metavanadate, etc. as raw materials. The composition, phase structure, particle size, absorbance spectrum, and photocatalytic performance of samples were characterized by XRD, EDS, nanolaser particle size analyzer, and UV-Vis spectrophotometer. The photocatalytic properties of V/Fe doped TiO2 were studied through degrading acid 3R dye, and the results show that when the content of V/Fe was 0.5%, the degradation rate reached more than 96% under irridation for 60 min.


1995 ◽  
Vol 10 (7) ◽  
pp. 1644-1652 ◽  
Author(s):  
Abhijit S. Gurav ◽  
Toivo T. Kodas ◽  
Jorma Joutsensaari ◽  
Esko I. Kauppincn ◽  
Riitta Zilliacus

Gas-phase particle size distributions and lead loss were measured during formation of (Bi,Pb)-Sr-Ca-Cu-O and pure PbO particles by spray pyrolysis at different temperatures. A differential mobility analyzer (DMA) in conjunction with a condensation particle counter (CPC) was used to monitor the gas-phase particle size distributions, and a Berner-type low-pressure impactor was used to obtain mass size distributions and size-classified samples for chemical analysis. For (Bi,Pb)-Sr-Ca-Cu-O, as the processing temperature was raised from 200 to 700 °C, the number average particle size decreased due to metal nitrate decomposition, intraparticle reactions forming mixed-metal oxides and particle densification. The geometric number mean particle diameter was 0.12 μm at 200 °C and reduced to 0.08 and 0.07 μm, respectively, at 700 and 900 °C. When the reactor temperature was raised from 700 and 800 °C to 900 °C, a large number (∼107 no./cm3) of new ultrafine particles were formed from PbO vapor released from the particles and the reactor walls. Particles made at temperatures up to 700 °C maintained their initial stoichiometry over the whole range of particle sizes monitorcd; however, those made at 800 °C and above were heavily depleted in lead in the size range 0.5–5.0 μm. The evaporative losses of lead oxide from (Bi,Pb)-Sr-Ca-Cu-O particles were compared with the losses from PbO particles to gain insight into the pathways involved in lead loss and the role of intraparticle processes in controlling it.


2014 ◽  
Vol 875-877 ◽  
pp. 130-134
Author(s):  
Wei Yang ◽  
Yi Chi Chen ◽  
Xiao Qun Wang ◽  
Dong Xiao Han ◽  
Li Qun Zhu

Fluorine-containing acrylate monomer modified acrylate hybrid latex particles were synthesized by seeded emulsion polymerization with methyl methacrylate (MMA), butyl acrylate (BA), methacrylic acid (MAA), hydroxyethyl methacrylate (HEMA), and trifluoroethyl methacrylate (TFMA) in the presence of three kinds of surfactant mixture conditions, respectively. The effect of different surfactant mixtures on properties of fluorinated acrylate latex and film were investigated. Chemical composition and morphology of the resultant hybrid latex particles were respectively characterized by Fourier transform infrared (FT-IR) spectroscopy and transmission electron microscopy (TEM). The addition of a small amount fluorine-containing surfactant leads to an increase of the monomer conversion and improvement of thermal stability of the latex. The average particle size of the latex prepared in the presence of OP-10/Le-180s/CO-436/Le-003 surfactant mixture was uniform and the particle distribution was narrow; thermogravimetric analysis (TGA) indicated the hybrid latex possessed good thermal stability, and the result also revealed the latex exhibited good dilution, refrigeration as well as Ca2+ stability.


1959 ◽  
Vol 32 (3) ◽  
pp. 814-824
Author(s):  
Maurice Morton ◽  
Samuel Kaizerman ◽  
Mary W. Altier

Abstract A theoretical relation has been derived for the equilibrium swelling of latex particles. The equilibrium solubility and rate of solution of solvents were measured on a series of polystyrene latex fractions of varying particle size. The solvents used were styrene, toluene, and chlorocyclohexane. It was found, as predicted by theory, that the equilibrium amount of solvent imbibed by latex particles is a direct function of the particle diameter and an inverse function of the interfacial energy at the surface of the particles. The molecular weight of the polymer has no effect on the equilibrium swelling, within the range from 100,000 to several million molecular weight units. The rate of imbibition of these solvents appears to be extremely rapid, indicating that equilibrium solubility would appear to be maintained in most polymerization reactions. The fact that a particular solvent is a “good” solvent for the polymer does not necessarily result in a greater swelling of the particles, since the solvent may show a higher interfacial energy against the aqueous phase. The soap titration method is best for determining the average particle size of a latex for purposes of predicting equilibrium swelling.


2002 ◽  
Vol 124 (3) ◽  
pp. 516-524 ◽  
Author(s):  
J. Jiang ◽  
Y. Hao ◽  
Y.-X. Tao

To improve the understanding of convective melting of packed solid particles in a fluid, an experimental investigation is conducted to study the melting characteristics of a packed bed by unmasking the buoyancy forces due to the density difference between the melt and solid particles. A close-loop apparatus, named the particle-melting-in-flow (PMF) module, is designed to allow a steady-state liquid flow at a specified temperature. The module is installed onboard NASA’s KC-135 reduced gravity aircraft using ice particles of desired sizes and water as the test media. Experimentally determined melting rates are presented as a function of upstream flow velocity, temperature and initial average particle size of the packed bed. It is found that the melting rate is influenced mainly by the ratio of the Reynolds number (Re, based on the initial particle diameter) to the square of the Froude number (Fr), and the Stefan number (Ste). In general, the dimensionless melting rate decreases as Re/Fr2 increases and increases as Ste increases. With the absence of gravity, i.e., as the Froude number approaches infinity, a maximum melting rate can be achieved. The increase in the melting rate proportional to the Stefan number also becomes more pronounced under the zero gravity condition. The trend of average and local Nusselt number of the melting packed bed under microgravity, as a function of Reynolds number and Prandtl number, is discussed and compared with the case of nonmelting packed bed.


2017 ◽  
Vol 81 (3) ◽  
pp. 515-530 ◽  
Author(s):  
Robert S. Farr ◽  
Victoria C. Honour ◽  
Marian B. Holness

AbstractIt is common practice to estimate a mean diameter for spherical or sub-spherical particles or vesicles in a rock by multiplying the average diameter of the approximately circular cross-sections visible in thin section by a factor of 1.273. This number-weighted average may be dominatedby the hard-to-measure fine tail of the size distribution, and is unlikely to be representative of the average particle diameter of greatest interest for a wide range of geological problems or processes. Average particle size can be quantified in a variety of ways, based on the mass or surfacearea of the particles, and here we provide exact relations of these different average measures to straightforward measurements possible in thin section, including an analysis of how many particles to measure to achieve a desired level of uncertainty. The use of average particle diameter isillustrated firstly with a consideration of the accumulation of olivine phenocrysts on the floor of the 135 m thick picrodolerite/crinanite unit of the Shiant Isles Main Sill. We show that the 45 m thick crystal pile on the sill floor could have formed by crystal settling within about a year.The second geological example is provided by an analysis of the sizes of exsolved Fe-rich droplets during unmixing of a basaltic melt in a suite of experimental charges. We show that the size distribution cannot be explained by sudden nucleation, followed by either Ostwald ripening or Browniancoalescence. We deduce that a continuous process of droplet nucleation during cooling is likely to have occurred.


2021 ◽  
Vol 3 ◽  
Author(s):  
Takaichi Watanabe ◽  
Kengo Karita ◽  
Midori Manabe ◽  
Tsutomu Ono

We develop a sequential flow process for the production of monodisperse poly (methyl methacrylate) (PMMA)/polystyrene (PS) composite particles through a soap-free emulsion polymerization of methyl methacrylate (MMA) using the first water-in-oil (W/O) slug flow and a subsequent seeded emulsion polymerization of styrene (St) using the second W/O slug flow. In this process, monodisperse PMMA seed particles are first formed in the dispersed aqueous phase of the first W/O slug flow. Subsequently, removal of the oil phase from the slug flow is achieved through a porous hydrophobic tubing, resulting in a single flow of the aqueous phase containing the seed particles. The aqueous phase is then mixed with an oil phase containing St monomer to form the second W/O slug flow. Finally, monodisperse PMMA/PS composite particles are obtained by a seeded emulsion polymerization of St using the second W/O slug flow. We compared the reaction performance between the slug flow and the batch processes in terms of particle diameter, monomer conversion, particle size distribution, and the number of particles in the system. We found that internal circulation flow within the slugs can enhance mass transfer efficiency between them during polymerization, which results in monodisperse PMMA/PS composite particles with a large particle diameter and a high monomer conversion in a short reaction time, compared to those prepared using the batch process. We believe that this sequential microflow process can be a versatile strategy to continuously produce monodisperse composite particles or core-shell particles in a short reaction time.


2010 ◽  
Vol 64 (6) ◽  
pp. 491-502 ◽  
Author(s):  
Dragana Pepic ◽  
Darinka Andjelkovic ◽  
Marija Nikolic ◽  
Svetlana Grujic ◽  
Jasna Djonlagic

Poly (?-caprolactone), PCL, is an aliphatic polyester suitable for controlled drug release due to its biodegradability, biocompatibility, non-toxicity and high permeability to many therapeutic drugs. This study investigates the effect of the preparation parameters on the size and the morphology of the PCL microspheres and on the release profile of carbamazepine from these microspheres. The PCL microspheres were prepared using oil-in-water (o/w) emulsion solvent evaporation method with the poly(vinyl alcohol), PVA, as the emulsion stabilizer. The influence of the stirring rate applied during the emulsion formation, the homogenization time and the emulsifier concentration on diameter and size distribution of the microspheres was analyzed by scanning electron microscope (SEM). The initial emulsion was formed applying high stirring rates of 10000, 18000 and 23000 rpm, for homogenization times: 5, 10 and 15 min. The diameter was strongly influenced by the stirring rate, and the average particle size decreased from 9.2 to 2.8 ?m with the increase of the stirring rate. Increasing the amount of PVA in the water phase from 0.2 to 1 mass% improved stabilization of the oil droplets and led to a slight decrease of the average particle diameter. Drug-loaded microspheres were prepared by the same technique using different amounts of carbamazepine (10 and 15 mass%), under given conditions (1 mass% PVA, stirring rate of 18000 rpm for a period of 5 min of emulsion formation). Additionally, microspheres were prepared by applying low stirring rate of 1000 rpm with 10 and 15 mass% of the drug. The SEM analysis showed that microspheres created with 18000 rpm stirring rate, had average diameters of 3-4 ?m, and the microspheres prepared with 1000 rpm stirring rate were larger than 100 ?m. It was also observed that, in the case of the large microspheres, carbamazepine was deposited on their surfaces, while the small microspheres had smooth surfaces without observable drug crystals. The encapsulation efficiency and the release behavior of the carbamazepine were examined using high performance liquid chromatography-ultraviolet spectroscopy (HPLC-UV). The drug encapsulation efficiencies were in the range from 69 to 81%, and were increasing with the increase of the amount of carbamazepine in both series. In vitro release experiments were carried out in the phosphate buffer solution (pH 7) at 37?C. The release rate was influenced by the microspheres size and morphology. The larger microspheres released more carbamazepine (85-95%) compared to the small ones (50-65%) for the same period. This behavior was attributed to the different drug distribution in the PCL matrix. Different mathematical models were used to describe drug release kinetics. It was concluded that the mechanism of the carbamazepine release from the microspheres was diffusion-controlled, independent on the type of microspheres. The kinetic parameters showed that the release of carbamazepine was slower from the smaller microspheres, probably as a result of more even distribution of the drug in the polymer matrix.


Sign in / Sign up

Export Citation Format

Share Document