scholarly journals Mechanical and Dynamic Properties of Hybrid Fiber Reinforced Fly-Ash Concrete

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Dan-Yang Su ◽  
Jian-Yong Pang ◽  
Xiao-Wen Huang

In order to explore the influence of basalt-polypropylene hybrid fiber on the static mechanical properties and dynamic compression properties of fly-ash concrete, 16 groups of basalt-polypropylene hybrid fiber fly-ash concrete (HBPC) and 1 group of benchmark concrete were designed and prepared. The slump, static compressive strength, static splitting tensile strength, and dynamic compressive performance tests were tested. At the same time, the mechanism of the mechanical properties of hybrid fiber reinforced fly-ash concrete was analyzed by means of scanning electron microscopy (SEM). The results show that the failure of the benchmark concrete is mainly brittle failure. Compared with the benchmark concrete, the static compressive strength and splitting tensile strength of HBPC are significantly enhanced. Basalt-polypropylene hybrid fiber, polypropylene fiber, and basalt fiber, are extremely significant factors affecting the slump, static compressive strength, and static splitting tensile strength of HBPC, respectively. The peak stress of the benchmark concrete and HBPC increases with the increase of the loading air pressure, showing a certain strain rate effect. SEM shows that the fibers have good dispersibility in the concrete and good adhesion with the concrete matrix interface, but excessive fibers will cause fiber agglomeration, which increases the internal defects of HBPC.

2021 ◽  
Vol 233 ◽  
pp. 03005
Author(s):  
Xiangrui Feng ◽  
Zhenshu Li ◽  
Anjing Ma

In this experiment, the effects of polypropylene thick fiber (PPTF) with different volume admixtures (0, 0.05%, 0.10%, 0.15%, 0.20%, 0.25%) on the compressive strength, splitting tensile strength and bending strength of large admixture of slag fly ash concrete were investigated with short-cut basalt fiber (BF) as a reference. The results show that the polypropylene thick fiber can work well with basalt fiber and improve its strengthening effect of single admixture. And 0.10% of polypropylene thick fiber and 0.10% of basalt fibers by volume have the best strengthening effect on the mechanical properties of the large amount of slag fly ash concret.


2014 ◽  
Vol 906 ◽  
pp. 329-334
Author(s):  
Yu Ting Zhu ◽  
Dong Tao Xia ◽  
Bo Ru Zhou

In this paper, according to the national standard and testing methods,the direct tension strength,splitting tensile strength and cubic compressive strength test were carried out for 8 different groups of hybrid fiber (containing steel fiber, macro-polypropylene fiber and dura fiber) reinforced HPC specimens.The results showed that when the volume proportion of ternary hybrid fiber was less than 1%, there was not obvious influence for the concrete compressive strength, but the splitting tensile strength increased by 26% ~ 69%; the ratio between splitting tensile strength and compressive strength for HFRC increased to 1/12~1/9. When added 0.7% steel fiber, 0.19% macro-polypropylene fiber and 0.11% dura fiber, the confounding effect was the best. Based on the advantages and disadvantages of tensile splitting strength and direct tensile strength test and the results of tests, the concept of equivalent tensile strength and calculative formula was put forward .


2021 ◽  
Vol 11 (17) ◽  
pp. 7926
Author(s):  
Qian Zhang ◽  
Wenqing Zhang ◽  
Yu Fang ◽  
Yongjie Xu ◽  
Xianwen Huang

In order to solve the problem of highly brittle shaft lining under dynamic loading, a combination of hybrid fiber concrete mixed with steel and polypropylene fiber is proposed to make shaft lining. C60, the concrete commonly used in shaft lining, was selected as the reference group. The static mechanical properties, dynamic mechanical properties, and crack failure characteristics of the hybrid fiber concrete were experimentally studied. The test results showed that compared to the reference group concrete, the compressive strength of the hybrid fiber-reinforced concrete did not significantly increase, but the splitting tensile strength increased by 60.4%. The split Hopkinson compression bar results showed that the optimal group peak stress and peak strain of the hybrid fiber concrete increased by 58.2% and 79.2%, respectively, and the dynamic toughness increased by 68.1%. The strain distribution before visible cracks was analyzed by the DIC technology. The results showed that the strain dispersion phenomenon of the fiber-reinforced concrete specimen was stronger than that of the reference group concrete. By comparing the crack failure forms of the specimens, it was found that compared to the reference group concrete, the fiber-reinforced concrete specimens showed the characteristics of continuous and slow ductile failure. The above results suggest that HFRC has significantly high dynamic splitting tensile strength and compressive deformation capacity, as well as a certain anti-disturbance effect. It is an excellent construction material for deep mines under complex working conditions.


2021 ◽  
Vol 30 (3) ◽  
pp. 464-476
Author(s):  
Haider Owaid ◽  
Haider Al-Baghdadi ◽  
Muna Al-Rubaye

Large quantities of paper and wood waste are generated every day, the disposal of these waste products is a problem because it requires huge space for their disposal. The possibility of using these wastes can mitigate the environmental problems related to them. This study presents an investigation on the feasibility of inclusion of waste paper ash (WPA) or wood ash (WA) as replacement materials for fly ash (FA) class F in preparation geopolymer concrete (GC). The developed geopolymer concretes for this study were prepared at replacement ratios of FA by WPA or WA of 25, 50, 75 and 100% in addition to a control mix containing 100% of FA. Sodium hydroxide (NaOH) solutions and sodium silicate (Na2SiO3) are used as alkaline activators with 1M and 10M of sodium hydroxide solution.The geopolymer concretes have been evaluated with respect to the workability, the compressive strength, splitting tensile strength and flexural strength. The results indicated that there were no significant differences in the workability of the control GC mix and the developed GC mixes incorporating WPA or WA. Also, the results showed that, by incorporating of 25–50% PWA or 25% WA, the mechanical properties (compressive strength, splitting tensile strength and flexural strength) of GC mixes slightly decreased. While replacement with 75–100% WPA or with 50–100% WA has reduced these mechanical properties of GC mixes. As a result, there is a feasibility of partial replacement of FA by up to 50% WPA or 25% WA in preparation of the geopolymer concrete.


2013 ◽  
Vol 438-439 ◽  
pp. 15-19
Author(s):  
Chun Jie Liu ◽  
Chun Yan Jia ◽  
Chang Yong Li

Although the machine-made sand was widely used for concrete in recent years in China, it was short of studies on the relations among the basic mechanical properties of fly-ash concrete with machine-made sand (MSFAC). However, these relations such as the compressive strength, the tensile strength and the elastic modulus with the cubic compressive strength (i.e. strength grade) are the basis of design for concrete structures. This paper summarizes the test data from the published references, and discusses the relations among these properties by statistical analyses compared with those of ordinary concrete. The results show that only the tensile strength of MSFAC can be safely forecasted by the same formula of ordinary concrete specified in current Chinese design code. When the strength grade is higher than C45, the axial compressive strength of MSFAC is largely forecasted by the formula of ordinary concrete. The elastic modulus of MSFAC is larger than that of ordinary concrete, which should be prospect by the formula in this paper. This work gives out some cautions for the proper use of the MSFAC in concrete structures.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3796
Author(s):  
Qiang Du ◽  
Changlu Cai ◽  
Jing Lv ◽  
Jiao Wu ◽  
Ting Pan ◽  
...  

This study investigated fundamental mechanical properties of a basalt fiber reinforced engineered cementitious composite (BF-ECC) with different volume fractions of basalt fiber (BF), water–binder ratio (W/B) and fly ash (FA) content. The compressive strength, splitting tensile strength, flexural strength and static modulus of BF-ECC were studied at 3, 28 and 56 days, respectively, to explore their development along the ages. Furthermore, the scanning electron microscopy (SEM) analysis was conducted to evaluate the microstructure of BF-ECC. Experiment results demonstrated that bond quality between the BF and the matrix is good, which leads to a significant increase in the flexural strength and splitting tensile strength. The pozzolanic effect of FA obviously improved the splitting tensile and flexural strength of BF-ECC after 56 days of curing, and the appropriate content of the FA content in the BF-ECC ranges from 50% to 60%.


2013 ◽  
Vol 671-674 ◽  
pp. 1869-1872 ◽  
Author(s):  
Wen Min He ◽  
Shuan Fa Chen ◽  
Chuang Wang ◽  
Xue Gang Zhang ◽  
Rui Xiong

Basalt fiber (BF) has a lot of advantageous properties. The actual effectiveness of the fiber depends greatly on their dispersion degree in the composites. With the help of ultrasonic wave and a dispersant carboxymethyl cellulose (CMC), the even dispersion of short basalt fibers in water is realized. The fluidity of the basalt fiber cement mortar becomes less as the fiber content increasing. When the fluidity of mortar of BFRC is greater than 170mm, the even dispersion of short basalt fibers in BFRC can be realized. Fly ash can effectively improve the fluidity of BFRC and the density of cement matrix. When the amount of fly ash replaces the cement less than 25% by weight, it can improve both the compressive strength and tensile strength at age of 28 days.


2018 ◽  
Vol 80 (5) ◽  
Author(s):  
Agustinus Agus Setiawan ◽  
Fredy Jhon Philip ◽  
Eka Permanasari

The objective of this research is to determine the mechanical properties of the waste-plastic-banner-fiber reinforced concrete: compressive strength, splitting tensile strength, rupture modulus and modulus of elasticity. Concrete mixtures with different proportions of waste plastic banner fiber were produced and tested: 0%, 0.25%, 0.5%, 1.0%, 2.0% of waste plastic banner fiber. The tests showed that the addition of fiber by 0.5% from the total concrete volume will increase the splitting tensile strength by 14.28% and produce the modulus of elasticity as high as 23,025 MPa (up to 12% from the normal mix)  and yield the concrete compressive strength of 35.56 MPa (up to 4.95% of the normal mixture). The rupture modulus will increase by 4.11% as the addition of 0.25% of waste plastic banner fiber. 


2011 ◽  
Vol 346 ◽  
pp. 26-29 ◽  
Author(s):  
Hong Wei Wang

A designed experimental study has been conducted to investigate the effect of the fiber fraction of polypropylene fiber on the mechanical properties of concrete containing fly ash, a large number of experiments have been carried out in this study. The mechanical properties include compressive strength, splitting tensile strength and compressive modulus of elasticity. On the basis of the experimental results of the specimens of six sets of mix proportions, the mechanism of action of polypropylene fiber on these mechanical properties has been analyzed in details. The results indicate that there is a tendency of increase in the compressive strength and splitting tensile strength, and the modulus of elasticity of concrete containing fly ash decrease gradually with the increase of fiber volume fraction with appropriate content.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Chaohua Jiang ◽  
Yizhi Wang ◽  
Wenwen Guo ◽  
Chen Jin ◽  
Min Wei

With great mechanical properties and corrosion resistance, amorphous alloy fiber (AAF) is a highly anticipated material in the fiber-reinforced concrete (FRC) field. In this study, the mechanical properties of AAFRC such as compressive strength, tensile strength, and flexural strength were examined. The comparison and analysis between AAFRC and steel fiber-reinforced concrete (SFRC) were also carried out. The results show that adding fibers significantly improves the concrete strength and toughness index. Compared with plain concrete, the compressive strength, splitting tensile strength, and flexural strength of AAFRC increase by 8.21–16.72%, 10.4–32.8%, and 18.12–45.21%, respectively. Meanwhile, the addition of AAF with a greater tensile strength and larger unit volume quantity improves the splitting tensile strength and flexural strength of concrete more noticeably than that of SF. Adding AAF improves the ductility of concrete more significantly in comparison to the SF. AAFRC shows great interfacial bonding performance as well. A prediction equation for the strength of AAFRC was proposed, which verified good accuracy calibrated based on the test results.


Sign in / Sign up

Export Citation Format

Share Document