scholarly journals Effects of lncRNA LINC01320 on Proliferation and Migration of Pancreatic Cancer Cells through Targeted Regulation of miR-324-3p

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Hua Meng ◽  
Kun Guo ◽  
Yun Zhang

Objective. LINC01320 is a new oncogenic gene. Nevertheless, the effect of LINC01320 on pancreatic cancer (PC) is still unclear. This research aimed to seek the influence of LINC01320 on PC and its possible mechanism. Methods. RT-qPCR is used to test the LINC01320 in tissues and cells. Cell viability, apoptosis, migration, and invasiveness are detected to explore the role of LINC01320 in PC, and target genes are predicted by bioinformatics methods. The mechanism of action was further explored by transfection of specific siRNA, miRNA mimetics, or miRNA inhibitors. In order to verify the effect of LINC01320 in vivo, we carried out tumor xenotransplantation. Results. We conclude that LINC01320 is highly expressed in PC tissues and cell strains. LINC01320 high expression was bound up with a poor prognosis. LINC01320 gene knockout inhibited the growth, migration, and invasiveness of PC cells. In addition, LINC01320 is expressed by miR-324-3p, which is also supported by in vivo experiments. Conclusion. LINC01320 is highly expressed in PC, and it can suppress the growth and migration of PC cells through targeted regulation of miR-324-3p, which is expected to become a latent target for clinical treatment.

Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1330
Author(s):  
Filipe Pinto ◽  
Liliana Santos-Ferreira ◽  
Marta T. Pinto ◽  
Catarina Gomes ◽  
Celso A. Reis

Biglycan (BGN gene), an extracellular proteoglycan, has been described to be associated with cancer aggressiveness. The purpose of this study was to clarify the clinical value of biglycan as a biomarker in multiple independent GC cohorts and determine the in vitro and in vivo role of biglycan in GC malignant features. We found that BGN is commonly over-expressed in all analyzed cohorts, being associated with disease relapse and poor prognosis in patients with advanced stages of disease. In vitro and in vivo experiments demonstrated that biglycan knock-out GC cells display major phenotypic changes with a lower cell survival, migration, and angiogenic potential when compared with biglycan expressing cells. Biglycan KO GC cells present increased levels of PARP1 and caspase-3 cleavage and a decreased expression of mesenchymal markers. Importantly, biglycan deficient GC cells that were supplemented with exogenous biglycan were able to restore biological features, such as survival, clonogenic and migratory capacities. Our in vitro and in vivo findings were validated in human GC samples, where BGN expression was associated with several oncogenic gene signatures that were associated with apoptosis, cell migration, invasion, and angiogenesis. This study provided new insights on biglycan role in GC that should be taken in consideration as a key cellular regulator with major impact in tumor progression and patients’ clinical outcome.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Feng Guo ◽  
Yingke Zhou ◽  
Hui Guo ◽  
Dianyun Ren ◽  
Xin Jin ◽  
...  

AbstractNR5A2 is a transcription factor regulating the expression of various oncogenes. However, the role of NR5A2 and the specific regulatory mechanism of NR5A2 in pancreatic ductal adenocarcinoma (PDAC) are not thoroughly studied. In our study, Western blotting, real-time PCR, and immunohistochemistry were conducted to assess the expression levels of different molecules. Wound-healing, MTS, colony formation, and transwell assays were employed to evaluate the malignant potential of pancreatic cancer cells. We demonstrated that NR5A2 acted as a negative prognostic biomarker in PDAC. NR5A2 silencing inhibited the proliferation and migration abilities of pancreatic cancer cells in vitro and in vivo. While NR5A2 overexpression markedly promoted both events in vitro. We further identified that NR5A2 was transcriptionally upregulated by BRD4 in pancreatic cancer cells and this was confirmed by Chromatin immunoprecipitation (ChIP) and ChIP-qPCR. Besides, transcriptome RNA sequencing (RNA-Seq) was performed to explore the cancer-promoting effects of NR5A2, we found that GDF15 is a component of multiple down-regulated tumor-promoting gene sets after NR5A2 was silenced. Next, we showed that NR5A2 enhanced the malignancy of pancreatic cancer cells by inducing the transcription of GDF15. Collectively, our findings suggest that NR5A2 expression is induced by BRD4. In turn, NR5A2 activates the transcription of GDF15, promoting pancreatic cancer progression. Therefore, NR5A2 and GDF15 could be promising therapeutic targets in pancreatic cancer.


2020 ◽  
Author(s):  
Zhu Jin ◽  
Yutong Chen ◽  
Yuchen Mao ◽  
Mingjuan Gao ◽  
Zebing Zheng ◽  
...  

Abstract Background: microRNAs have been studied widely in hepatoblastoma. However, the role of miR-125b-5p and its relationship with the lncRNA sNEAT1 and YES1 in hepatoblastoma have not been reported previously. We aimed to reveal the role of NEAT1/miR-125b-5p/YES1 in the progression of hepatoblastoma.Methods: We collected tumor tissues and their adjacent tissues from 12 hepatoblastoma patients. qRT-PCR was applied to detect the expression of miR-125b-5p, and the relationship of miR-125b-5p with clinicopathological characteristics was analyzed. Dual luciferase reporter assays and RNA pull down assays were used to identify the relationships among NEAT1, miR-125b-5p and YES1. CCK8, Transwell assays and wound healing assays were used to examine cell viability, invasion and migration. In vivo experiments were also applied to detect the effect of miR-125b-5p on hepatoblastoma.Results: miR-125b-5p was significantly downregulated in hepatoblastoma tissue and cells. The higher the PRETEXT grade, the lower the miR-125b-5p level. NEAT1 could bind to miR-125b-5p and inhibit its expression. miR-125b-5p could target YES1 and inhibit its expression. Overexpression of miR-125b-5p decreased the proliferation, invasion, and migratory ability of hepatoblastoma cells. YES1 could rescue the above effects. At the same time, overexpression of miR-125b-5p resulted in decreased YES1 and tumor growth inhibition in vivo.Conclusion: miR-125b-5p acted as a shared miRNA of NEAT1 and YES1 in hepatoblastoma. Overexpression of miR-125b-5p could target YES1 and inhibit its expression, therefore inhibiting the progression of hepatoblastoma.


2010 ◽  
Vol 33 (5-6) ◽  
pp. 191-205 ◽  
Author(s):  
S. Marchán ◽  
S. Pérez-Torras ◽  
A. Vidal ◽  
J. Adan ◽  
F. Mitjans ◽  
...  

Background: Pancreatic cancer, the fifth leading cause of adult cancer death in Western countries, lacks early detection, and displays significant dissemination ability. Accumulating evidence shows that integrin-mediated cell attachment to the extracellular matrix induces phenotypes and signaling pathways that regulate tumor cell growth and migration.Methods: In view of these findings, we examined the role ofβ3in pancreatic cancer by generating two stableβ3-expressing pancreatic human cell lines and characterizing their behavior in vitro and in vivo.Results: Transduction ofβ3selectively augmented the functional membraneαvβ3integrin levels, as evident from the enhanced adhesion and migration abilities related to active Rho GTPases. No effects on in vitro anchorage-dependent growth, but higher anoikis were detected inβ3-overexpressing cells. Moreover, tumors expressingβ3displayed reduced growth. Interestingly, treatment of mice with anαv-blocking antibody inhibited the growth ofβ3-expressing tumors to a higher extent.Conclusion: Our results collectively support the hypothesis thatαvβ3integrin has dual actions depending on the cell environment, and provide additional evidence on the role of integrins in pancreatic cancer, which should eventually aid in improving prediction of the effects of therapies addressed to modulate integrin activities in these tumors.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e13086-e13086
Author(s):  
Xiu Chen ◽  
Jinhai Tang

e13086 Background: Obesity is associated with the risk of breast cancer(BCa) incidence and development. However, biological changes in obesity BCa individuals are still uncertain. Nowadays, circCNIH4, one of novel non-coding RNAs, was found to be a non-invasive biomarker in cancers. Methods: We verified the cancer-promoting role of obesity in BCa patients by comparing BMI indexes of 33 BCa and 44 benign tumor patients. Then we cocultured viscera adipose cells(HPA-v) and BCa cells(MCF-7/H and MDA-MB-231/H) to confirm the function of adipocytes on metastasis of BCa cells through wound healing, transwell assays. In vivo experiments were also performed. We analyzed the expression level of circCNIH4 in MCF-7/H, MDA-MB-231/H and different subtypes of BCa cells by quantitative polymerase chain reaction. Simultaneously, we identified inhibited effects of circCNIH4 on metastasis of BCa cells by wound healing, transwell assays and verified the location of circCNIH4 by FISH. Luciferase Assay was used to detect harbored miRNA. Rescue experiments were then applied. Results: We found the BMI of BCa patients(24.37±2.51) was much higher than benign patients(22.97±2.91). Metastasis of BCa cells were obviously promoted after in vitro and in vivo experiments. Then we found the expression of circCNIH4 in MCF-7/H and MDA-MB-231/H were down-regulated 0.71 and 0.52 than that in MCF-7 and MDA-MB-231. Also, circCNIH4 was positively correlated with less aggressive types of BCa cells. Overexpression of circCNIH4 in MDA-MB-231 could suppress cell invasion and migration, while silencing of it in MCF-7 promoted cell invasion and migration. The FISH assay demonstrated that circCNIH4 mainly located in the cytoplasm and might function as a “sponge” for miRNA. MiR-135b functioned as a tumor promoter gene from data of 93 BCa patients (HR = 2.27; 1.01 − 5.12), and it could be captured by circCNIH4 via luciferase and rescued assays. Conclusions: In this study, we revealed that BMI or viscera adipocytes could deteriorate prognosis of BCa and circCNIH4 could be a novel biomarker for non-invasive BCa. In details, circCNIH4 mainly suppressed the adipocyte's pro-metastasis effects on BCa by capturing miR-135b.


2021 ◽  
Author(s):  
Jie Hua ◽  
Qingcai Meng ◽  
Chen Liang ◽  
Miaoyan Wei ◽  
Jiang Liu ◽  
...  

Abstract Background: The aim of this study was to explore the role of leucine-rich α2-glycoprotein 1 (LRG1) in the biological function and prognosis of pancreatic cancer.Methods: LRG1 was detected in serum and tissue specimens from patients with pancreatic cancer by enzyme-linked immunosorbent assay (ELISA), qRT-PCR, western blotting, and immunohistochemical (IHC) analysis. LRG1-overexpressing and LRG1-knockdown cell lines were established with lentiviral vectors containing LRG1-overexpression and shRNA plasmids, respectively. Colony formation, Cell Counting Kit-8 (CCK-8), wound healing, Transwell migration, and in vivo tumorigenicity assays were conducted to assess proliferation and migration of the pancreatic cancer cells. RNA sequencing was performed to identify potential downstream molecules of LRG1.Results: Serum LRG1 levels were significantly elevated in patients with pancreatic cancer compared with healthy controls. The mRNA and protein levels of LRG1 were higher in cancer tissues than in adjacent normal tissues. High LRG1 expression was significantly associated with shorter overall survival and found to be an independent risk factor for poor prognosis. Additionally, LRG1 dramatically promoted cell proliferation and migration in vitro and accelerated tumor growth in vivo. By RNA sequencing, we identified Deltex (DTX)-3-like E3 ubiquitin ligase (DTX3L) as a potential downstream molecule of LRG1. Further validation experiments confirmed a positive correlation between LRG1 and DTX3L.Conclusions: LRG1 is a valuable prognostic marker for pancreatic cancer that plays a crucial role in cell proliferation and migration. Targeting LRG1 or the downstream molecule DTX3L provides a novel strategy for the treatment of pancreatic cancer.


2021 ◽  
Vol 11 ◽  
Author(s):  
Tao Qin ◽  
Jie Li ◽  
Ying Xiao ◽  
Xueni Wang ◽  
Mengyuan Gong ◽  
...  

BackgroundPerineural invasion (PNI) is an important pathologic feature of pancreatic cancer, and the incidence of PNI in pancreatic cancer is 70%-100%. PNI is associated with poor outcome, metastasis, and recurrence in pancreatic cancer patients. There are very few treatments for PNI in pancreatic cancer. Honokiol (HNK) is a natural product that is mainly obtained from Magnolia species and has been indicated to have anticancer activity. HNK also has potent neurotrophic activity and may be effective for suppressing PNI. However, the potential role of HNK in the treatment of PNI in pancreatic cancer has not been elucidated.MethodsIn our study, pancreatic cancer cells were treated with vehicle or HNK, and the invasion and migration capacities were assessed by wound scratch assays and Transwell assays. A cancer cell-dorsal root ganglion coculture model was established to evaluate the effect of HNK on the PNI of pancreatic cancer. Western blotting was used to detect markers of EMT and neurotrophic factors in pancreatic tissue. Recombinant TGF-β1 was used to activate SMAD2/3 to verify the effect of HNK on SMAD2/3 and neurotrophic factors. The subcutaneous tumor model and the sciatic nerve invasion model, which were established in transgenic engineered mice harboring spontaneous pancreatic cancer, were used to investigate the mechanism by which HNK inhibits EMT and PNI in vivo.ResultsWe found that HNK can inhibit the invasion and migration of pancreatic cancer cells. More importantly, HNK can inhibit the PNI of pancreatic cancer. The HNK-mediated suppression of pancreatic cancer PNI was partially mediated by inhibition of SMAD2/3 phosphorylation. In addition, the inhibitory effect of HNK on PNI can be reversed by activating SMAD2/3. In vivo, we found that HNK can suppress EMT in pancreatic cancer. HNK can also inhibit cancer cell migration along the nerve, reduce the damage to the sciatic nerve caused by tumor cells and protect the function of the sciatic nerve.ConclusionOur results demonstrate that HNK can inhibit the invasion, migration, and PNI of pancreatic cancer by blocking SMAD2/3 phosphorylation, and we conclude that HNK may be a new strategy for suppressing PNI in pancreatic cancer.


Oncogenesis ◽  
2019 ◽  
Vol 8 (11) ◽  
Author(s):  
Ashley L. Hein ◽  
Nichole D. Brandquist ◽  
Caroline Y. Ouellette ◽  
Parthasarathy Seshacharyulu ◽  
Charles A. Enke ◽  
...  

Abstract PP2A holoenzyme complexes are responsible for the majority of Ser/Thr phosphatase activities in human cells. Each PP2A consists of a catalytic subunit (C), a scaffold subunit (A), and a regulatory subunit (B). While the A and C subunits each exists only in two highly conserved isoforms, a large number of B subunits share no homology, which determines PP2A substrate specificity and cellular localization. It is anticipated that different PP2A holoenzymes play distinct roles in cellular signaling networks, whereas PP2A has only generally been defined as a putative tumor suppressor, which is mostly based on the loss-of-function studies using pharmacological or biological inhibitors for the highly conserved A or C subunit of PP2A. Recent studies of specific pathways indicate that some PP2A complexes also possess tumor-promoting functions. We have previously reported an essential role of PR55α, a PP2A regulatory subunit, in the support of oncogenic phenotypes, including in vivo tumorigenicity/metastasis of pancreatic cancer cells. In this report, we have elucidated a novel role of PR55α-regulated PP2A in the activation of YAP oncoprotein, whose function is required for anchorage-independent growth during oncogenesis of solid tumors. Our data show two lines of YAP regulation by PR55α: (1) PR55α inhibits the MOB1-triggered autoactivation of LATS1/2 kinases, the core member of the Hippo pathway that inhibits YAP by inducing its proteasomal degradation and cytoplasmic retention and (2) PR55α directly interacts with and regulates YAP itself. Accordingly, PR55α is essential for YAP-promoted gene transcriptions, as well as for anchorage-independent growth, in which YAP plays a key role. In summary, current findings demonstrate a novel YAP activation mechanism based on the PR55α-regulated PP2A phosphatase.


2019 ◽  
Vol 476 (11) ◽  
pp. 1637-1651
Author(s):  
Liziane Raquel Beckenkamp ◽  
Isabele Cristiana Iser ◽  
Giovana Ravizzoni Onzi ◽  
Dieine Maira Soares da Fontoura ◽  
Ana Paula Santin Bertoni ◽  
...  

Abstract Extracellular ATP (eATP) and its metabolites have emerged as key modulators of different diseases and comprise a complex pathway called purinergic signaling. An increased number of tools have been developed to study the role of nucleotides and nucleosides in cell proliferation and migration, influence on the immune system and tumor progression. These tools include receptor agonists/antagonists, engineered ectonucleotidases, interference RNAs and ectonucleotidase inhibitors that allow the control and quantification of nucleotide levels. NTPDase1 (also called apyrase, ecto-ATPase and CD39) is one of the main enzymes responsible for the hydrolysis of eATP, and purified enzymes, such as apyrase purified from potato, or engineered as soluble CD39 (SolCD39), have been widely used in in vitro and in vivo experiments. However, the commercial apyrase had its effects recently questioned and SolCD39 exhibits limitations, such as short half-life and need of high doses to reach the expected enzymatic activity. Therefore, this study investigated a non-viral method to improve the overexpression of SolCD39 and evaluated its impact on other enzymes of the purinergic system. Our data demonstrated that PiggyBac transposon system proved to be a fast and efficient method to generate cells stably expressing SolCD39, producing high amounts of the enzyme from a limited number of cells and with high hydrolytic activity. In addition, the soluble form of NTPDase1/CD39 did not alter the expression or catalytic activity of other enzymes from the purinergic system. Altogether, these findings set the groundwork for prospective studies on the function and therapeutic role of eATP and its metabolites in physiological and pathological conditions.


Sign in / Sign up

Export Citation Format

Share Document