scholarly journals Characterization of Air Void in Porous Asphalt Mixture Using Image Techniques and Permeability Test

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Zhongping Tang ◽  
Fanglin Huang

In this study, air void contents and distributions of porous asphalt mixtures along the vertical and horizontal directions were quantitatively measured on planar images. Air void contents were determined using some image techniques; while the permeability was measured by the falling head test. Two aggregate gradations (G1 and G2) and three blow numbers (30, 40, and 50) were chosen to explore the effects of gradation and compaction effort on the porosity and permeability. Results showed that porosities and permeabilities are symmetrically distributed along the middle of the specimens; the porosities and permeabilities got the minimum values around the middle zone. A finer gradation or a significant compaction effort generally led to a lower porosity and permeability coefficient. In the horizontal direction, the air void content showed an increasing trend from the outside layer to the inner layer, indicating the nonuniformity of porosity distribution.

2021 ◽  
Author(s):  
Ahmet Buğra İbiş ◽  
Burak Şengöz ◽  
Ali Topal ◽  
Derya Kaya Özdemir

Porous asphalt pavement is defined as an asphalt concrete that is designed with open gradation aggregate which helps in removing the water with an air void content of about 20% by creating drainage channels. Open gradation consists of large amounts of coarse aggregates and small amounts of fine aggregates. The water is drained due to this hollow structure, this air void content in the porous asphalt mixture which inevitably decreases with time is the main parameter affecting the service life as well as the structural and functional performance. Moreover, the reduction in air void content is one of the main reasons for the loss of permeability in porous asphalt pavements and this lead to the increase in pavement density under heavy traffic conditions. Each country has its own technical asphalt specification involving the required compaction energy and temperature. This study involves the effect of compaction temperatures and numbers on the air void in porous asphalt pavements prepared with 50/70 penetration grade bitumen. As a result of experimental studies, it has been observed that the reduced compaction temperature and the number of compaction (energy) increase the air void level in porous asphalt pavements.


Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1230 ◽  
Author(s):  
Tan Hung Nguyen ◽  
Jaehun Ahn ◽  
Jaejun Lee ◽  
Jin-Hwan Kim

Porous asphalt has been used for permeable pavement to improve safety of roadways and the effectiveness of storm water management. As a surface drainage layer with frequent exposure to water, this material is affected by moisture. In this study, dynamic modulus tests were performed on both moisture unconditioned and conditioned specimens to characterize viscoelastic properties of porous asphalt mixture. The dynamic modulus values of porous asphalt materials with air void content of 9.0% and 20.5% were investigated at dry condition and after specified moisture conditioning cycles. One cycle of moisture conditioning procedure included placing specimens in water tank at 60 °C for 24 h, and then in another water tank at 25 °C for additional 2 h. The results showed that porous asphalt mixture with lower air void content resulted in higher values of dynamic modulus, and these values of porous asphalt with air void content of 9.0% was about 1.5 to 3.0 times that of porous asphalt with air void content of 20.5%. Higher value of the first number of performance graded binder (average 7-day maximum pavement design temperature) seems to make the dynamic modulus values at high temperatures larger. After moisture conditioning, the dynamic modulus of porous asphalt mixture increased, overall, especially at low temperatures. The appropriated selection of asphalt binder, a weakening of asphalt due to moisture damage can be reduced.


2019 ◽  
Vol 11 (10) ◽  
pp. 2938 ◽  
Author(s):  
Rita Kleizienė ◽  
Ovidijus Šernas ◽  
Audrius Vaitkus ◽  
Rūta Simanavičienė

Low-noise pavements are used as an effective method of traffic noise mitigation. Low-noise pavements reduce the noise that arises due to interactions between tires and road surfaces (tire/road) via the implementation of three main components: low pavement roughness, negative pavement texture, and a high pavement air-void content. The tire/road noise reduction capabilities of the wearing layer vary depending on the aggregate type, gradation, bitumen and air-void content, and density. Consequently, the demand for an accurate tire/road noise prediction model has arisen from the design of asphalt mixtures. This paper deals with how asphalt mixture components of the wearing layer influence tire/pavement noise reduction and presents a model for tire/road noise level prediction based on the asphalt mixture composition. The paper demonstrates that the noise reduction level of low-noise asphalt pavements is dependent on the composition of the asphalt mixture. Asphalt wearing layer mixture composition parameters were tested in the laboratory from cores taken from 18 road sections, where acoustic properties were measured using a close-proximity (CPX) method. The proposed linear model is based on the bitumen amount, the air-void content of the mixture and aggregate shape and involves materials that comply with the general requirements for high-quality asphalt mixtures. The model allows for the prediction of the tire/road noise level at the asphalt mixture design stage using asphalt mixture components and volumetric properties. The proposed model is the first stage in the building of a complex model with a much wider range of low-noise asphalts components, pavement profile depth and CPX-value relationships.


Author(s):  
Mustafa Aboufoul ◽  
Andrea Chiarelli ◽  
Isaac Triguero ◽  
Alvaro Garcia

This paper investigates the effects of air void topology on hydraulic conductivity in asphalt mixtures with porosity in the range 14%-31%. Virtual asphalt pore networks were generated using the Intersected Stacked Air voids (ISA) method, with its parameters being automatically adjusted by the means of a differential evolution optimisation algorithm, and then 3D printed using transparent resin. Permeability tests were conducted on the resin samples to understand the effects of pore topology on hydraulic conductivity. Moreover, the pore networks generated virtually were compared to real asphalt pore networks captured via X-ray Computed Tomography (CT) scans. The optimised ISA method was able to generate realistic 3D pore networks corresponding to those seen in asphalt mixtures in term of visual, topological, statistical and air void shape properties. It was found that, in the range of porous asphalt materials investigated in this research, the high dispersion in hydraulic conductivity at constant air void content is a function of the average air void diameter. Finally, the relationship between average void diameter and the maximum aggregate size and gradation in porous asphalt materials was investigated.


Porous asphalt (PA) is a type of asphalt mixture that has large air void content to increase the drainage capability of flexible pavement. However, PA suffers a few drawbacks such as less durable and less tensile strength due to large air void characteristic. Thus, this study intended to utilize cellulose fiber to increase the overall performance of PA. Cellulose fiber (CF) used were in the range of 0.2% to 0.6% by weight of PA mixture. Among the tests involve to analyze the overall performance of CF modified PA were Abrasion Loss, Marshall Stability, Resilient Modulus and Dynamic Creep. From data analysis, it shows that 0.4% CF significantly increased the abrasion resistance. Meanwhile, highest stability and resilient modulus values obtained at 0.6% CF-PA. From the results, it shows that the addition of CF can significantly enhance the overall performance of PA.


2021 ◽  
Vol 13 (13) ◽  
pp. 2613
Author(s):  
Nectaria Diamanti ◽  
A. Peter Annan ◽  
Steven R. Jackson ◽  
Dylan Klazinga

Density is one of the most important parameters in the construction of asphalt mixtures and pavement engineering. When a mixture is properly designed and compacted, it will contain enough air voids to prevent plastic deformation but will have low enough air void content to prevent water ingress and moisture damage. By mapping asphalt pavement density, areas with air void content outside of the acceptable range can be identified to predict its future life and performance. We describe a new instrument, the pavement density profiler (PDP) that has evolved from many years of making measurements of asphalt pavement properties. This instrument measures the electromagnetic (EM) wave impedance to infer the asphalt pavement density (or air void content) locally and over profiles.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4238
Author(s):  
Piotr Pokorski ◽  
Piotr Radziszewski ◽  
Michał Sarnowski

The paper presents the issue of resistance to permanent deformations of bridge pavements placed upon concrete bridge decks. In Europe, bridge asphalt pavement usually consists of a wearing course and a protective layer, which are placed over the insulation (waterproofing). Protective layers of bridge pavement are commonly constructed using low air void content asphalt mixes as this provides the suitable tightness of such layers. Due to increased binder content, asphalt mixes for bridge pavement may have reduced resistance to permanent deformations. The article presents test results of resistance to permanent deformations of asphalt mixes for the protective layers. In order to determine the composition of mixtures with low air void content and resistance to permanent deformation, an experimental design was applied using a new concept of asphalt mix composition. Twenty-seven different asphalt mixture compositions were analyzed. The mixtures varied in terms of binder content, sand content and grit ratio. Resistance to permanent deformation was tested using the laboratory uniaxial cyclic compression method (dynamic load creep). On the basis of experimental results and statistical analysis, the functions of asphalt mixture permanent deformation resistance were established. This enabled a determination of suitable mixture compositions for protective layers for concrete bridge decks.


2019 ◽  
Vol 15 (1) ◽  
pp. 206-226 ◽  
Author(s):  
Kabiru Abdullahi Ahmad ◽  
Norhidayah Abdul Hassan ◽  
Mohd Ezree Abdullah ◽  
Munder A.M. Bilema ◽  
Nura Usman ◽  
...  

Purpose In order to fully understand the properties of porous asphalt, investigation should be conducted from different point of views. This is from the fact that porous asphalt mixture designed with the same aggregate gradation and air void content can give different infiltration rate due to the different formation of the internal structure. Therefore, the purpose of this paper is to investigate the micro-structural properties and functional performance of porous asphalt simultaneously. Design/methodology/approach The aim is to develop imaging techniques to process and analyze the internal structure of porous asphalt mixture. A few parameters were established to analyze the air void properties and aggregate interlock within the gyratory compacted samples captured using a non-destructive scanning technique of X-ray computed tomography (CT) throughout the samples. The results were then compared with the functional performance in terms of permeability. Four aggregate gradations used in different countries, i.e. Malaysia, Australia, the USA and Singapore. The samples were tested for resilient modulus and permeability. Quantitative analysis of the microstructure was used to establish the relationships between the air void properties and aggregate interlock and the resilient modulus and permeability. Findings Based on the results, it was found that the micro-structural properties investigated have successfully described the internal structure formation and they reflect the results of resilient modulus and permeability. In addition, the imaging technique which includes the image processing and image analysis for internal structure quantification seems to be very useful and perform well with the X-ray CT images based on the reliable results obtained from the analysis. Research limitations/implications In this study, attention was limited to the study of internal structure of porous asphalt samples prepared in the laboratory using X-ray CT but can also be used to assess the quality of finished asphalt pavements by taking core samples for quantitative and qualitative analysis. The use of CT for material characterization presents a lot of possibilities in the future of asphalt concrete mix design. Originality/value Based on the validation process which includes comparisons between the values obtained from the image analysis and those from the performance test and it was found that the developed procedure satisfactorily assesses the air voids distribution and the aggregate interlock for this reason, it can be used.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7060
Author(s):  
Mohammad Alharthai ◽  
Qing Lu ◽  
Ahmed Elnihum ◽  
Asad Elmagarhe

This study investigates the substitution of conventional aggregate with a Florida washed shell in open-graded asphalt mixtures and evaluates the optimal substitution percentage in aggregate gradations of various nominal maximum aggregate sizes (NMASs) (i.e., 4.75, 9.5, and 12.5 mm). Laboratory experiments were performed on open-graded asphalt mixture specimens with the coarse aggregate of sizes between 2.36 and 12.5 mm being replaced by the Florida washed shell at various percentages (0, 15, 30, 45, and 100%). Specimen properties relevant to the performance of open-graded asphalt mixtures in the field were tested, evaluated, and compared. Specifically, a Marshall stability test, Cantabro test, indirect tensile strength test, air void content test, and permeability test were conducted to evaluate the strength, resistance to raveling, cracking resistance, void content, and permeability of open-graded asphalt mixtures. The results show that there is no significant difference in the Marshall stability and indirect tensile strength when the coarse aggregates are replaced with Florida washed shell. This study also found that the optimum percentages of Florida washed shell in open-graded asphalt mixture were 15, 30, and 45% for 12.5, 9.5, and 4.75 mm NMAS gradations, respectively.


Sign in / Sign up

Export Citation Format

Share Document