scholarly journals Leaky Wave Array in Full Planar Substrate with EBG-Based Wave Guiding Channel

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Linghui Kong ◽  
Sen Yan ◽  
Vladimir Volskiy ◽  
Binke Huang ◽  
Guy A. E Vandenbosch

A new type of wave guiding structure is proposed is this paper. The guiding channel is developed on the full planar dielectric substrate and aligned with electromagnetic bandgap (EBG) units. Since the bandgap of these mushroom-like units is calculated with a coverage of the channel working band, these units are of great importance on ensuring the transmission efficiency and eliminating the coupling effect between channels. Then, this wave guiding structure is extended to the design of a six-element leaky wave antenna array with a complete size of 25.6 mm × 80.6 mm, which is working at Ku band from 12.0 GHz to 12.8 GHz and achieving a bandwidth of about 0.8 GHz, a gain of 11.36 dBi, and an efficiency of ca. 86.7% at 12.0 GHz. Within the working frequency band, this antenna topology achieves a frequency-dependent beam scanning in the forward directions, and it offers a potential for radar application on road speed detecting with low costs.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3243
Author(s):  
Shaojian Song ◽  
Peichen Guan ◽  
Bin Liu ◽  
Yimin Lu ◽  
HuiHwang Goh

Impedance-based stability analysis is an effective method for addressing a new type of SSO accidents that have occurred in recent years, especially those caused by the control interaction between a DFIG and the power grid. However, the existing impedance modeling of DFIGs is mostly focused on a single converter, such as the GSC or RSC, and the influence between the RSC and GSC, as well as the frequency coupling effect inside the converter are usually overlooked, reducing the accuracy of DFIG stability analysis. Hence, the entire impedance is proposed in this paper for the DFIG-based WECS, taking coupling factors into account (e.g., DC bus voltage dynamics, asymmetric current regulation in the dq frame, and PLL). Numerical calculations and HIL simulations on RT-Lab were used to validate the proposed model. The results indicate that the entire impedance model with frequency coupling is more accurate, and it is capable of accurately predicting the system’s possible resonance points.



2021 ◽  
Vol 35 (12) ◽  
pp. 1507-1512
Author(s):  
Peng Chen ◽  
Lihua Wang ◽  
Tongyu Ding

In this paper, a broadband dual-polarized antenna with concentric rectangular ring electromagnetic bandgap (CRR-EBG) structure is proposed for 5G applications. The antenna consists of a pair of ±45° cross dipoles, an EBG array, and two inverted L-shaped improved feeding structures. In particular the ring part of the feeding structures can reduce the coupling between two ports. The leaky wave area of the EBG structure can be used to increase bandwidths. According to the measured results, the bandwidths of port1 and port2 are 32% (3.04-4.21GHz) and 28.3% (3.13-4.16GHz), respectively. The port-to-port isolation can reach up to 23 dB, and the average gain is approximately 5 dBi. The antenna has the advantages of a wide band, good isolation and a stable radiation pattern, which can be better used in 5G communications.



Author(s):  
Dong Liang ◽  
Bingkui Chen ◽  
Rulong Tan ◽  
Ruijin Liao

A novel gear transmission with double circular arc-involute tooth profile is studied in this paper. The generation principle and mathematical models of this proposed gear drive are provided based on gear geometry. The meshing characteristics of tooth surfaces are evaluated according to the analyses of motion simulation, mechanics property and sliding coefficient. The transmission efficiency experiment is based on the developed gear prototype, and a comparison with an involute gear drive is presented. The further study on dynamics analysis and key manufacturing technology will be conducted, and this new type of gear drive is expected to have excellent transmission performance.



2016 ◽  
Vol 9 (2) ◽  
pp. 299-306
Author(s):  
Vasudevan Karuppiah ◽  
Raju Srinivasan

This paper proposes a novel T-shape electromagnetic bandgap (EBG) structure to suppress simultaneous switching noise (SSN) in mixed-signal systems. Noise is generated due to simultaneous switching multiple drivers in the digital ICs. It is called as SSN. It could propagate between power and ground planes of underlying PCB platform and interfere with the functionality of nearby RF/Analog ICs. So, the RF modules are isolated from the digital module for proper functioning of entire mixed-signal system. A high-impedance surface, called T-shape EBG has been implemented between digital and RF modules. It will exhibit the characteristics of bandgap for a wide frequency range to suppress the propagation of switching noise. A single unit-cell of T-EBG is periodically patterned over one side of the PCB and the other side is kept continuous. In this paper different characteristics of T-EBG have been simulated and verified with the measurement results. A 3 × 3 T-EBG layout provides an isolation of −40 dB from 0.72 to 6.39 GHz. A scaled version of T-EBG is used to shift the bandgap towards higher frequency range from 2.22 to 7.19 GHz. Also, a novel layout methodology has been proposed to broaden the bandgap from 2.02 to 18.84 GHz without reducing the thickness of dielectric substrate.



RSC Advances ◽  
2016 ◽  
Vol 6 (113) ◽  
pp. 112300-112306 ◽  
Author(s):  
Minzhe Liu ◽  
Hefu Li ◽  
Weixing Yu ◽  
Taisheng Wang ◽  
Zhenyu Liu ◽  
...  

A polymer film resting on a planar substrate under the influence of a electric field. (A) A conductive patterned electrode. (B) A conductive pattern on a dielectric substrate.



Author(s):  
S. Doucha ◽  
M. Abri ◽  
H. Abri Badaoui ◽  
B. Fellah

A new type of leaky-wave antenna (LWA) using half-mode substrate integrated waveguide (HMSIW) as the base structure is proposed in this paper. The structure consists of an array of slot, antenna designed to operate in X band applications from 8 to 12 GHz. HMSIW preserves nearly all the advantages of SIW whereas its size is nearly reduced by half. The antenna radiates one main beam that can be steered from the backward to the forward direction by changing frequency.



2005 ◽  
Vol 41 (1) ◽  
pp. 95-102 ◽  
Author(s):  
Nadezda Talijan ◽  
Jasna Stajic-Trosic ◽  
Aleksandar Grujic ◽  
Vladan Cosovic ◽  
Vladimir Menushenkov ◽  
...  

The influence on the magnetic properties of nanocristalline ribbons and powders has character of microstructure, between others ? the grain size volume of hard and soft magnetic phases and their distribution. Magnetic properties of ribbons and powders depend mainly on their chemical composition and parameters of their heat treatment [1]. Technology of magnets from nanocristalline ribbon consists of the following process: preparing the Nd-Fe- B alloy, preparing the ribbon, powdering of the ribbon, heat treatment of the powder and finally preparing the magnets. Nanocomposite permanent magnet materials based on Nd-Fe- B alloy with Nd low content are a new type of permanent magnetic material. The microstructure of this nanocomposite permanent magnet is composed of a mixture of magnetically soft and hard phases which provide so called exchange coupling effect.



2015 ◽  
Vol 33 (3) ◽  
pp. 439-447 ◽  
Author(s):  
Yan Yan ◽  
Lina Sheng ◽  
Zhiwu Huang ◽  
Jie Wang ◽  
Zeen Yao ◽  
...  

AbstractProton radiography is used for advanced hydrotesting as a new type radiography technology due to its powerful penetration capability and high detection efficiency. A new proton radiography terminal will be developed to radiograph static samples at the Institute of Modern Physics of Chinese Academy of Science. The proton beam with the maximum energy of 2.6 GeV will be produced by Heavy Ion Research Facility in Lanzhou-Cooling Storage Ring. The proton radiography terminal consists of the matching magnetic lens and the Zumbro lens system. In this paper, the design scheme and all optic parameters of this beam terminal for 2.6 GeV proton energy are presented by simulating the beam optics using WINAGILE code. My-BOC code is used to test the particle tracking of proton radiography beam line. Geant4 and G4beamline codes are used for simulating the proton radiography system. The results show that the transmission efficiency of proton without target is 100%, and the effect of secondary particles can be neglected. To test this proton radiography system, the proton images for an aluminum plate sample with two rectangular orifices and a step brass plate sample are respectively simulated using Geant4 code. The results show that the best spatial resolution is about 36 μm, and the differences of the thickness are not >10%.



Author(s):  
Masashi Yamanaka ◽  
Katsumi Inoue ◽  
Genso Igari ◽  
Yukihito Narita

The crossed axle traction drive developed by the authors is applied to a new mechanism of CVT, the Shaft Drive CVT. The input and output shafts with conical disks are parallel and a idler shaft having conical rollers at both ends is placed perpendicular to the input/output shafts. This idler shaft transmits a torque from the input shaft to the output shaft and its movement produces the speed variation by changing the contact point between the input/output disks and the idler rollers. The purposes of this study are 1) to propose the new CVT mechanism, 2) to design a curved shape of disk to decrease an amount of spin caused by the movement of contact point, 3) to develop a prototype to confirm the CVT to work and to evaluate the effect of curved disk by means of a power transmission efficiency. The design procedure of shapes of disk and roller are shown by geometrical analysis. The amount of spin is reduced 80% using the proposed concave disk. The range of speed changing ratio of the prototype is 0.5 to 2. The efficiency of 80% was obtained in case of input torque 10 Nm at uniform rate by using the conical disks. The effectiveness of concave disk is evaluated by comparing the experimental results using the conical and concave disks, respectively.



2017 ◽  
Vol 31 (16-19) ◽  
pp. 1744051
Author(s):  
Xinghua Zhan ◽  
Fei Chen ◽  
Zoran Salcic ◽  
Chee Cheong Wong ◽  
Wei Gao

Submicron zinc oxide (ZnO) spheres prepared by a two-stage hydrothermal method were assembled into a layer on a substrate by vertical deposition. Vanadium pentoxide (V2O5) was deposited onto the top of ZnO spheres by magnetron sputtering followed by annealing in oxygen atmosphere at 500[Formula: see text]C for an hour. The microstructures and optical properties of the prepared samples were investigated. The photoluminescence (PL) results indicate that the intensity of PL in the annealed ZnO/V2O5 composite microstructures is dramatically improved compared to the constituent V2O5 and ZnO spheres. The intensity enhancement of light emission from the ZnO/V2O5 composite may be attributed to the special microstructure of ZnO particles and the coupling effect between ZnO and V2O5. This transition oxide composite may possibly be developed into a new type of high-efficiency light emitting material.



Sign in / Sign up

Export Citation Format

Share Document