scholarly journals Stochastic Damage Constitutive Relationship of Steel-Reinforced Concrete Bond-Slip

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Ming Xie ◽  
Jiahao Liu ◽  
Peng Wang ◽  
Zi Wang ◽  
Jingjing Zhou

The bond-slip damage of the interface between profile steel and concrete is the key point of steel-reinforced concrete structure. This paper is based on the statistical analysis of a large amount of experimental data and the distribution characteristics of bonding stress on the bonding surface of the profile steel and concrete, and the conversion rules between the three parts (chemical bonding force, frictional resistance, and mechanical interaction) of the bond force are obtained. According to the mutual conversion rules of the three parts of the bonding force on the steel-reinforced concrete bonding surface, a mesomechanical model based on the spring-friction block element is established. Taking into account the discreteness of concrete performance on the bonding surface and the randomness of defects, using the stochastic damage theory, a constitutive model of stochastic bonding damage on the steel-reinforced concrete bonding surface is established. The comparative analysis with the results of a large number of steel-reinforced concrete pull-out tests shows that the model can reasonably reflect the damage characteristics of the steel-reinforced concrete bonding surface.

Author(s):  
Katarzyna Zdanowicz ◽  
Boso Schmidt ◽  
Hubert Naraniecki ◽  
Steffen Marx

<p>The bond behaviour of concrete specimens with carbon textile reinforcement was investigated in the presented research programme. Pull-out specimens were cast from self-compacting concrete with expansive admixtures and in this way chemical prestress was introduced. The aim of the research was to compare bond behaviour between prestressed specimens and non-prestressed control specimens. During pull-out tests, the pull-out force and notch opening were measured with a load cell and laser sensors. Further, bond - slip and pull-out force - crack width relationships were drawn and compared for prestressed and non-prestressed specimens. Chemically prestressed specimens reached 24% higher bond strength than non-prestressed ones. It can be therefore concluded, that chemical prestressing positively influences the bond behaviour of concrete with textile reinforcement and thus better utilisation of its properties can be provided.</p>


2011 ◽  
Vol 250-253 ◽  
pp. 2857-2860 ◽  
Author(s):  
Yu Zhuo Wang ◽  
Chuang Guo Fu

Prestressed steel reinforced concrete structure, compared with other concrete structure has its unique advantages. So it is mainly used in large span and conversion layers. With the popularization of this structure,more attention should be payed on fire resistance performance. On the basis of reasonable assume,two steps model is used as concrete high strength calculation model. Simplified intensity decreased curve is used as rebar,steel and prestressed. Two ultimate bearing capacity formulas of prestressed steel reinforced concrete beam are established. One is for the beam whose tensile area is under fire, the other is for the beam whose compression area is under fire. Prestressed steel reinforced concrete structure has both prestressed concrete structure’s advantages and steel reinforced concrete structure ’s advantage. Steel reinforced concrete is used to improve the bearing capacity of the structure. Prestressed steel is used to improve the ultimate state of structure’s performance during normal use. Thereby structure’s performance is better to play. There are many similarities between prestressed steel reinforced concrete structure and steel reinforced concrete structure about fire resistance performance. Because of prestressed steel reinforced concrete structure’s own characteristics, there are still many problems about fire resistance. This paper mainly presented bending terminal bearing capacity of prestressed steel reinforced concrete beam under fire. Established simplified formulae for calculation, it is meet the engineering accuracy requirement.


2011 ◽  
Vol 382 ◽  
pp. 352-355 ◽  
Author(s):  
Ming Xie ◽  
Shan Suo Zheng

Based on the experimental study of pull-out specimens on bond-slip behaviors between shaped steel and concrete in SRC (Steel Reinforced Concrete Structures), the graphic of the whole damage process are obtained. The crack propagation of concrete is fractal analyzed to calculate the fractal dimension. Relationships between fractal dimension and bond-slip behaviors of SRC are discussed. The main factors impact the bond-slip behaviors are studied to established the relationship with fractal dimension. Linear dependence relation of fractal dimension and bond-slip behaviors and the impact factors is discovered. Statistics formula is established to describe the relation of fractal dimension and ultimate bond strengths. All these may contribute to the further analysis of bond-slip performance and fractal behaviors in SRC composite structures.


2013 ◽  
Vol 273 ◽  
pp. 492-495
Author(s):  
Min Huang

At present the reinforced concrete structure is one of the structures widely used. With China's rapid economic development and the improvement of people's living standard, the structural safety requirements are also getting higher and higher. Especially in the design in the structure of the modern housing, the ductility performance of the steel reinforced concrete structure becomes more and more important. This paper put forward the design basis aiming to study the steel structure ductility design, preventing early damage of the member in the role of the earthquake, and avoiding structure system appear undue damage.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 293
Author(s):  
Alinda Dey ◽  
Domas Valiukas ◽  
Ronaldas Jakubovskis ◽  
Aleksandr Sokolov ◽  
Gintaris Kaklauskas

A bond mechanism at the reinforcement-concrete interface is one of the key sources of the comprehensive functioning of reinforced concrete (RC) structures. In order to apprehend the bond mechanism, the study on bond stress and slip relation (henceforth referred as bond-slip) is necessary. On this subject, experimental and numerical investigations were performed on short RC tensile specimens. A double pull-out test with pre-installed electrical strain gauge sensors inside the modified embedded rebar was performed in the experimental part. Numerically, a three dimensional rib scale model was designed and finite element analysis was performed. The compatibility and reliability of the numerical model was verified by comparing its strain result with an experimentally obtained one. Afterwards, based on stress transfer approach, the bond-slip relations were calculated from the extracted strain results. The maximum disparity between experimental and numerical investigation was found as 19.5% in case of strain data and 7% for the bond-slip relation at the highest load level (110 kN). Moreover, the bond-slip curves at different load levels were compared with the bond-slip model established in CEB-fib Model Code 2010 (MC2010). Overall, in the present study, strain monitoring through the experimental tool and finite element modelling have accomplished a broader picture of the bond mechanism at the reinforcement-concrete interface through their bond-slip relationship.


The issues of designing a steel-reinforced concrete floor using bent steel profiles are considered. The steel-reinforced concrete flooring consists of a monolithic reinforced concrete slab arranged on a removable formwork, and steel bent profiles. The removable formwork during the concreting process rests on steel beams without additional mounting posts in the floor span. Steel beams accept the weight of the formwork and concrete during the pouring, working on bending. After concrete strengthening, they mainly work on stretching as part of composite steel-reinforced concrete structure. The article has identified the advantages and disadvantages of steel-reinforced concrete flooring with the use of light steel thin-walled bent profiles. Checking the strength of the beam at the concreting stage and evaluating the load-bearing capacity of the floor after the concrete strength is set confirm the performance of this structure. Using the regulatory methodology for SP 266.1325800.2016, the area of implementation of steel and concrete flooring with CFS beams and the nomenclature of applied steel beams have been established. For practical application of the presented design, it is recommended to conduct experimental and theoretical research and develop engineering methods.


2014 ◽  
Vol 580-583 ◽  
pp. 1430-1434
Author(s):  
Jia Jue Lin ◽  
Ai Rong Liu ◽  
Qi Cai Yu ◽  
Jiang Dong Deng

The method of MMCP (modified modal cyclic pushover) which can reflect the dual criterion of deformation and energy was used to make an assessment on seismic performances of the steel reinforced concrete piers and reinforced concrete bridge piers. Then the calculated results were analyzed comparing with the results of dynamic time historical analysis and quasi static test. To some extent, the MMCP analysis may simulate the seismic action. In addition, the MMCP method can also be associated with the design response spectrum, making the evaluation results to be reliable and safe. The results indicate that MMCP applicability analysis also exists in the steel reinforced concrete structure, and the seismic capacity of steel reinforced concrete bridge piers is better than reinforced concrete bridge piers.


2012 ◽  
Vol 166-169 ◽  
pp. 1395-1398
Author(s):  
Cao Xiu Li ◽  
De Jian Shen ◽  
Pei Ling He ◽  
Xian Feng Dong ◽  
Hong Fei Zhang

Bond-slip performance between section steel and concrete has effect on crack width of steel reinforced concrete(SRC)beams based on experimental results. Current standards about SRC structures do not involve bond-slip effects when calculating the crack width of SRC beams, and this is not valid exactly . This article describes a new method of crack width calculation for SRC beams, which considering the bond-slip effects on crack width. Crack width of SRC beams are divided into two parts: one part ignoring the bond-slip between steel and concrete, and the other part considering additional crack width caused by the bond-slip. The total crack width is the sum of the two parts. Results show that the proposed method in this article is coincide with experimental study.


2012 ◽  
Vol 166-169 ◽  
pp. 514-519
Author(s):  
Jian Wen Zhang ◽  
Shi Hui Guo

Finite element analysis method of steel reinforced lightweight concrete pull-out specimens is exploded based on the test results. Spring element and local bond slip constitutive relation are introduced in analysis so as to consider the interfacial bond-slip between steel and lightweight concrete. Element tributary area and flange or web position should be taken into account in order to confirm the spring element real constant. Analysis results indicate that specimens bearing capacity and deformation can be well simulated adopting the stated method and constitutive relationship.


Sign in / Sign up

Export Citation Format

Share Document