scholarly journals Study on Finite Element Model of the Prefabricated Reinforced Concrete Beam-Column Joints with Grouted Sleeves

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Xiaoyong Luo ◽  
Hao Long ◽  
Ya Ou ◽  
Shuang Dong

Based on the monotonic tensile test of grouted sleeve specimens conducted, this paper uses multifactor regression analysis to construct the equivalent constitutive relationship of grouted sleeve specimens under uniaxial tension. The study based on this constitutive relationship of grouted sleeves and the effect of bond and slip between steel and concrete were considered. The prefabricated reinforced concreted beam-column joints with grouted sleeves were presented with finite element software ABAQUS. The seismic behavior of prefabricated reinforced concreted beam-column joints with grouted sleeves under low-frequency cyclic loading was then investigated. In addition, parametric studies via finite element analysis were performed to examine the influence of various parameters on the strength and energy dissipation capacity of the specimens. The simulation results show that plastic deformation was mainly observed near the beam-column interface; the hysteretic curve of this joint was plump. The test results showed that good energy dissipation and displacement ductility capacities can be achieved. The error of yield load between the numerical simulated and experimental result was 7.11%, the error of peak load was 6.88%, the error of ultimate load was 3.76%, and the error of displacement ductility was 7.84%. Results showed that the calculated results obtained in the paper agree well with test results from the references. The finite element model adopted in this paper can reflect the seismic behavior of the prefabricated reinforced concrete beam-column joints with grouted sleeves by using equivalent constitutive relation.

2020 ◽  
Vol 23 (9) ◽  
pp. 1934-1947
Author(s):  
Dapeng Chen ◽  
Li Chen ◽  
Qin Fang ◽  
Yuzhou Zheng ◽  
Teng Pan

The bending behavior of reinforced concrete beams under uniform pressure is critical for the research of the blast-resistance performance of structural components under explosive loads. In this study, a bending test of five reinforced concrete beams with the dimensions of 200 mm (width) × 200 mm (depth) × 2500 mm (length) under uniform load produced by a specific cylinder-shaped rubber bag filled with air or water was conducted to investigate their flexural performances. An air bag load was applied to three of the reinforced concrete beams, a water bag load was applied to one reinforced concrete beam, and the remainder beam was subjected to the 4-point bending load. The experimental results highlighted that the air bag and water bag loading methods can be used to effectively apply uniform loads to reinforced concrete beams. Moreover, the stiffness of the air bag was improved by 123% in accordance with the initial pressure increases from 0.15 to 0.45 MPa. In addition, a finite element model of the test loading system was established using ABAQUS/Standard software. Moreover, the critical factors of the air bag loading method were analyzed using the numerical model. The calculated results were found to be in good agreement with the test data. The established finite element model can therefore be used to accurately simulate the action performances of the uniform loading technique using rubber bags filled with air or water.


2000 ◽  
Vol 27 (3) ◽  
pp. 490-505 ◽  
Author(s):  
Mostafa Elmorsi ◽  
M Reza Kianoush ◽  
W K Tso

A new finite element model for reinforced concrete beam-column joints is proposed. The model considers the effects of bond-slip and shear deformations in the joint panel region. The problems associated with modeling bond-slip of anchored reinforcing bars are discussed. The proposed bond-slip model is examined at the element level by comparing its predictions with other analytical and experimental results. The ability of the model to simulate bond deterioration and eventual pullout of anchored reinforcing bars under severe cyclic excitation is demonstrated. This model is incorporated into the global beam-column joint element. Further comparisons are made between the predictions of the proposed beam-column joint model and other analytical and experimental results under reversed cyclic loading to show the validity of the model to describe the bond-slip behavior of the joints.Key words: bond, bond-slip, finite element, beam-column, reinforced concrete, cyclic.


Author(s):  
H. Roy ◽  
S. Chandraker

Nowadays, heavy and bulky rotors are replaced by the light yet strong rotor, where the composite material is only supplementary. The composite may be constructed either by reinforcing long unidirectional fiber into matrix material or stacking of lamina, where each lamina has different orientation of fiber. But mathematical modelling of such type of rotor is little difficult when considering different orientation of fiber. This invokes us to construct multilayer rotors of different isotropic material and associated formulation to show its better dynamic performance. Generally internal damping has an enormous effect on the dynamics of rotor shaft system. For the sake of modelling, all layers are assumed to made of viscoelastic material and perfectly bonded. The constitutive relationship of each layer is represented by two element voigt model and equation of motion is obtained in time domain. This paper involves the development of both classical and finite element mathematical model of multilayer viscoelastic rotors, which contents system characteristics. Under these conditions, the complex modal behaviour of the rotor-shaft is studied to get an insight of the dynamic characteristics of the system, in terms of Decay rate, Stability Limit of Spin-speed, First Natural Frequency and also Unbalance frequency response.


2012 ◽  
Vol 588-589 ◽  
pp. 203-207
Author(s):  
Chi Yun Zhao ◽  
Hua Li ◽  
Li Yun Li

The nonlinear behavior of the full scale test of the composite joint between steel reinforced concrete beam and concrete filled steel tubular column under low cyclic reversed loading are simulated by using finite element software ANSYS. A separated model was used, element concrete solid 65, element shell 181 and element link 8 were used to model concrete material, steel members and steel bars respectively. The numerical analysis results are compared with the data of the experimental research. The advantages and shortcoming of the finite element model are given. A better numerical simulation method and a use for reference to the similar case are expected to be afforded.


2013 ◽  
Vol 438-439 ◽  
pp. 467-471
Author(s):  
Jun Wen Zhou ◽  
Feng Hua Zhao ◽  
Yong Sheng Qi ◽  
Wei Cheng Shi

Based on the tested data, the ANSYS finite element analysis software was adopted to establish the finite element model for the concrete beam nonlinear analysis.The finite element models were developed using 3-D solid element for concrete and shell element for the Carbon Fiber Reinforced Ploymer (CFRP) sheet. The results obtained from the ANSYS were compared with the experimental data for two strengthened beams with different thickness CFRP sheet. The comparisons were made for the curves of load-midspan deflection, yielding load and ultimate load. Models were calculated at the same condition as the experimental beams. Two reinforced beams strengthened with CFRP sheet were calculated in four-point bending. The load-deflection curves from the finite element analysis agree well with the experimental results. The average difference in ultimate load for two cases is 5.5%.


2021 ◽  
Vol 2021 ◽  
pp. 1-21 ◽  
Author(s):  
Yang Li ◽  
Xiaofeng Zhao ◽  
Ping Tan ◽  
Fulin Zhou ◽  
Jin Jiang

In this study, in a novel buckling-restrained steel plate shear wall (BRSPSW) with out-of-plane deformation spaces, angle steel stiffeners have been installed so as to create gaps between the steel plate and the covering concrete slabs. A finite element model has been developed to analyse the effect of the gap. According to the finite element results, seismic performance of this novel BRSPSW has been tested under cyclic loading at the scale ratio of 1/3. The failure pattern, hysteretic characteristics, skeleton curve, equivalent stiffness, ductility, and energy dissipation have all been systematically analysed. A stiffened steel plate shear wall (SPSW) has also been tested in order to determine the differences between these two steel shear walls in load-carrying capability and the function and significance of the gap. The test results show that the novel BRSPSW does not only significantly enhance the ultimate bearing capacity, stiffness, ductility, and accumulated energy dissipation of the SPSW but also keep the steel plate basically intact at the end of the test. This can be attributed to the existence of the gaps between the infilled steel plate and the covering concrete slabs. The hysteretic characteristics and the strength and deformation characteristics of this novel BRSPSW have been simulated by using the finite element model, and the test results are in good agreement with the finite element results. Hence, the BRSPSW is an excellent steel plate shear wall to be used in high rise structure to resist horizontal loadings.


2012 ◽  
Vol 625 ◽  
pp. 25-29
Author(s):  
Bin Rong Zhu ◽  
Hai Jun Xing ◽  
Jing Bo Yang

To accurately analyze the force and deformation of the transmission tower, it is necessary to study performance of bolted joint in the tower. In the paper single shear and double shear bolted joint with number of bolts changed is tested. Based on the actual data in test, nonlinear finite element model of bolted joint is established with ABAQUS, considering the bolt clearance and preload, and shows good agreement with test results, which is proved correct and applicable. Eventually, through a comparison of FEM and test results, the factors that affect bolt slip and the changing relationship of axial force of bolt and friction force is described.


2008 ◽  
Vol 400-402 ◽  
pp. 881-886 ◽  
Author(s):  
Li Xue Jiang ◽  
Shi Ju Zheng ◽  
Wei Ping Zhang ◽  
Xiang Lin Gu

Eight weak reinforced concrete beam-column connections and two strong ones subjected to cyclic loads were tested. Effects of the one-way slab, top reinforcement ratio of the beam as well as the transverse reinforcement ratio inside the joint on the seismic behavior of reinforced concrete beam-column connections were primarily investigated. Tests results show that, when subjected to the negative moment, the beam flexural resistance increases notably due to the presence of the slab. However, failure mode of the weak connection transforms from the beam flexural failure to the joint shear failure, resulting from the increased joint shear brought by the slab participation. Besides, the presence of the slab reduces the ultimate relative rotation, ductility and energy-dissipation capacity of the connection. Generally, weak connections can receive more benefit from the one-way slab than strong connections. Connections with less amount of top reinforcement in the beam exhibit better ductility and energy-dissipation capacity, which indicates that it is not always good to strengthen the beam negative moment zones in existing structures. The transverse reinforcement inside the joint has little effect on the seismic behavior of the weak connection with a one-way slab.


2013 ◽  
Vol 477-478 ◽  
pp. 1096-1100
Author(s):  
Xiao Hong Zhou

After an introduction of the involve type of panelfrictional in-filled panel (FIP for short), a finite element model has been built to research on the seismic behavior of RC frame with different panels (FIP and traditional in-filled panel, TIP for short). The Taft wave was chosen for further seismic analysis. Results show that the layout schemes of FIP have significant influence to the story drift and slight influence to the acceleration of RC frame. Compared with the TIP, the FIP have almost no stiffening and strengthening effect to the frame, and showed a certain degree of energy dissipation effects, which indicate a good applicability in engineering.


Sign in / Sign up

Export Citation Format

Share Document