scholarly journals Camellia japonica Essential Oil Inhibits α-MSH-Induced Melanin Production and Tyrosinase Activity in B16F10 Melanoma Cells

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Si Young Ha ◽  
Ji Young Jung ◽  
Jae-Kyung Yang

Essential oils are aromatic oils extracted from the leaves, stems, peels, petals, and roots of aromatic plants grown in nature or grown in organic methods and have various medical effects as natural substances. The essential oil extracted from Camellia japonica seeds exhibits various functional properties; however, its tyrosinase inhibitory activity has not been investigated extensively. This study is performed to investigate the chemical composition and tyrosinase inhibitory activity of Camellia japonica seed essential oil (CJS-EO). Hexamethylcyclotrisiloxane (42.36%) and octamethylcyclotetrasiloxane (23.28%) are the two primary components of CJS-EO, as identified via gas chromatography-mass spectrometry. The inhibitory activities of CJS-EO and positive control arbutin are further evaluated against mushroom tyrosinase. The results show that CJS-EO and arbutin inhibit tyrosinase activity. Moreover, CJS-EO significantly inhibits melanogenesis in the α-melanocyte-stimulating hormone-treated group, and a significant amount of melanin is suppressed. To ascertain the cause of the CJS-EO tyrosinase inhibitory effect and melanin reduction effect, genetic and protein analyses are performed. Based on our results, we tentatively conclude that CJS-EO can inhibit melanocytes from harmful factors such as tyrosinase-related protein. These results demonstrate that CJS-EO possesses potent antityrosinase activity and may be a good skin-whitening agent.

Author(s):  
Akram Taleghani ◽  
Samira Eghbali-Feriz ◽  
Parisa Shokouhnam ◽  
Seyed Ahmad Emami ◽  
Faegheh Farhadi ◽  
...  

Background: Pistacia is a genus of flowering plants from the Anacardiaceae family that grows in different parts of Iran. This genus has different pharmacological activities, including antioxidant, antimicrobial, anti-mutagenic, and anti-inflammatory activities. Objectives: In this study, we investigated the anti-melanogenic effect of different extracts and essential oil from unripe fruits of P. atlantica subsp. Kurdica on B16F10 cell line. Methods: The inhibitory effect was determined on the synthesis of melanin, cellular tyrosinase, mushroom tyrosinase activity, and oxidative stress by the colorimetric and fluorometric methods. Results: The data showed that all different concentrations of various P. atlantica subsp. Kurdica extracts had no cytotoxic effect on B16F10 cells compared to the control group. Kojic acid as positive control had significant decreasing effects on tyrosinase activity, melanin content, and ROS production (P < 0.001). Different concentrations of P. atlantica subsp. Kurdica extracts decreased all measured parameters, including cellular tyrosinase and melanin content, as well as ROS production. Also, the essential oil concentration had no significant effect in this study. The major essential oil components were α-pinene 60.1%, myrcene 8.0%, and β-pinene 5.2%. Conclusions: The melanogenesis inhibitory and antioxidant effects of P. atlantica subsp. Kurdica on B16F10 cells may suggest this plant as a new pharmaceutical agent in reducing skin pigment and aging in the cosmetic industry.


Planta Medica ◽  
2021 ◽  
Author(s):  
Birgit Waltenberger ◽  
Françoise Lohézic-Le Dévéhat ◽  
Thi Huyen Vu ◽  
Olivier Delalande ◽  
Claudia Lalli ◽  
...  

AbstractProtein tyrosine phosphatase 1B plays a significant role in type 2 diabetes mellitus and other diseases and is therefore considered a new drug target. Within this study, an acetone extract from the lichen Stereocaulon evolutum was identified to possess strong protein tyrosine phosphatase 1B inhibition in a cell-free assay (IC50 of 11.8 µg/mL). Fractionation of this bioactive extract led to the isolation of seven known molecules belonging to the depsidones and the related diphenylethers and one new natural product, i.e., 3-butyl-3,7-dihydroxy-5-methoxy-1(3H)-isobenzofurane. The isolated compounds were evaluated for their inhibition of protein tyrosine phosphatase 1B. Two depsidones, lobaric acid and norlobaric acid, and the diphenylether anhydrosakisacaulon A potently inhibited protein tyrosine phosphatase 1B with IC50 values of 12.9, 15.1, and 16.1 µM, respectively, which is in the range of the protein tyrosine phosphatase 1B inhibitory activity of the positive control ursolic acid (IC50 of 14.4 µM). Molecular simulations performed on the eight compounds showed that i) a contact between the molecule and the four main regions of the protein is required for inhibitory activity, ii) the relative rigidity of the depsidones lobaric acid and norlobaric acid and the reactivity related to hydrogen bond donors or acceptors, which interact with protein tyrosine phosphatase 1B key amino acids, are involved in the bioactivity on protein tyrosine phosphatase 1B, iii) the cycle opening observed for diphenylethers decreased the inhibition, except for anhydrosakisacaulon A where its double bond on C-8 offsets this loss of activity, iv) the function present at C-8 is a determinant for the inhibitory effect on protein tyrosine phosphatase 1B, and v) the more hydrogen bonds with Arg221 there are, the more anchorage is favored.


2013 ◽  
Vol 49 (4) ◽  
pp. 803-809
Author(s):  
Monica Lacerda Lopes Martins ◽  
Henrique Poltronieri Pacheco ◽  
Iara Giuberti Perini ◽  
Dominik Lenz ◽  
Tadeu Uggere de Andrade ◽  
...  

In 1820, French naturalist August Saint Hillaire, during a visit in Espírito Santo (ES), a state in southeastern Brazil, reported a popular use of Cyperaceae species as antidote to snake bites. The plant may even have a hypotensive effect, though it was never properly researched. The in vitro inhibitory of the angiotensin converting enzyme (ACE) activity of eigth ethanolic extracts of Cyperaceae was evaluated by colorimetric assay. Total phenolic and flavonoids were determined using colorimetric assay. The hypotensive effect of the active specie (Rhychonospora exaltata, ERE) and the in vivo ACE assay was measured in vivo using male Wistar Kyoto (ERE, 0.01-100mg/kg), with acetylcholine (ACh) as positive control (5 µg/kg, i.v.). The evaluation of ACE in vivo inhibitory effect was performed comparing the mean arterial pressure before and after ERE (10 mg/kg) in animals which received injection of angiotensin I (ANG I; 0,03, 03 and 300 µg/kg, i.v.). Captopril (30 mg/kg) was used as positive control. Bulbostylis capillaris (86.89 ± 15.20%) and ERE (74.89 ± 11.95%, ERE) were considered active in the in vitro ACE inhibition assay, at 100 µg/mL concentration. ACh lead to a hypotensive effect before and after ERE's curve (-40±5% and -41±3%). ERE showed a dose-dependent hypotensive effect and a in vivo ACE inhibitory effect. Cyperaceae species showed an inhibitory activity of ACE, in vitro, as well as high content of total phenolic and flavonoids. ERE exhibited an inhibitory effect on both in vitro and in vivo ACE. The selection of species used in popular medicine as antidotes, along with the in vitro assay of ACE inhibition, might be a biomonitoring method for the screening of new medicinal plants with hypotensive properties.


2018 ◽  
Vol 42 (4) ◽  
pp. 408-419 ◽  
Author(s):  
Ellison Rosario de Oliveira ◽  
Dejane Santos Alves ◽  
Geraldo Andrade Carvalho ◽  
Bárbara Maria Ribeiro Guimarães de Oliveira ◽  
Smail Aazza ◽  
...  

ABSTRACT Fall armyworm (FAW) (Spodoptera frugiperda) is a polyphagous insect responsible for damage to several crops. Synthetic chemical insecticides and genetically modified plants are the most commonly used methods for FAW control. However, the selection of resistant populations has been reported in several studies, justifying the search for new molecules to be used in the control of S. frugiperda. The aim of the present study was to evaluate the toxicity of lemongrass (Cymbopogon flexuosus) essential oil (LEO) and its major component (citral) in relation to FAW. Additionally, the anticholinesterase activity of LEO and citral was evaluated using acetylcholinesterase (AChE) from Electrophorus electricus. The LEO was toxic to FAW when added to an artificial diet (LC50 = 1.35 mg mL-1) at the highest concentrations tested, and the median lethal time (LT50) was 18.85 h. Major components of LEO were identified by gas chromatography-mass spectrometry, and citral, the most abundant component, was used in FAW bioassays. The insecticidal activity of citral was statistically similar to that of LEO, demonstrating that citral was responsible for the insecticidal activity of LEO. Inhibition of AChE was measured, and the mean inhibitory concentration (IC50) values for LEO and citral were 650- and 405-fold higher, respectively, than that verified for the positive control (methomyl insecticide), suggesting selectivity for non-target organisms. Based on these results, citral and C. flexuosus have the potential to be applied in the development of new products for the control of S. frugiperda.


2019 ◽  
Vol 14 (7) ◽  
pp. 1934578X1985098
Author(s):  
Giang Thi Kim Lien ◽  
Do Thi Thuy Van ◽  
Dao Hung Cuong ◽  
Pham Hai Yen ◽  
Bui Huu Tai ◽  
...  

A new phenolic (caricapapayol, 1) and 8 known compounds (2-9) were isolated from the flowers of Carica papaya. Their structures were determined by analysis of HR-ESI-MS, NMR spectral data, and comparison with the literature. Among known compounds, compound 2 has not been reported from natural source. Compounds 1, 2, and 4 exhibited tyrosinase inhibitory activity with IC50 values of 14.3 ± 2.7, 25.5 ± 1.9, and 19.8 ± 3.0 µM, respectively, in comparison with positive control kojic acid IC50 11.3 ± 1.6 µM.


Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 483 ◽  
Author(s):  
Xiao Guan ◽  
Depeng Ge ◽  
Sen Li ◽  
Kai Huang ◽  
Jing Liu ◽  
...  

Artemisia argyi Lévl. et Vant essential oil could be used as a good antimicrobial flavouring agent and applied in the food industry. In this study, three methods, including simultaneous distillation-extraction (SDE), subcritical extraction and hydrodistillation, were applied to extract A. argyi essential oil. Compared with subcritical extraction (1%) and hydrodistillation (0.5%), SDE gave a higher yield (1.2%). Components of the essential oils were analysed with gas chromatography-mass spectrometry (GC-MS), and the most abundant ingredients were caryophyllene oxide, neointermedeol, borneol, α-thujone and β-caryophyllene. These five components accounted for 82.93%, 40.90% and 40.33% for SDE, subcritical extraction, and hydrodistillation, respectively. Based on agar disc diffusion and minimum inhibitory concentration (MIC) assays, SDE oil showed a significant inhibitory effect towards Listeria monocytogenes, Escherichia coli, Proteus vulgaris, Salmonella enteritidis and Aspergillus niger. Furthermore, electron microscope observations (SEM) confirmed that SDE oil could obviously deform cell morphology and destroy the structure of cell walls. Performances showed that SDE was a promising process for extracting A. argyi essential oil with both high yield and antimicrobial activity.


2019 ◽  
Vol 25 (4) ◽  
pp. 358-363
Author(s):  
Nur Athirah Hashim ◽  
Farediah Ahmad ◽  
Wan Mohd Nuzul Hakimi Wan Salleh ◽  
Shamsul Khamis

Background: Piper species are aromatic plants used as spices in the kitchen, but their secondary metabolites have also shown biological effects on human health. In traditional medicine, Piper species have been used worldwide to treat several diseases such as urological problems, skin, liver and stomach ailments, for wound healing, and as antipyretic and anti-inflammatory agents. In the present study, we attempted to isolate the phytochemicals from Piper caninum and Piper magnibaccum and evaluate their tyrosinase inhibitory activity. Methods: Phytochemical constituents of the extracts were investigated using various chromatographic and spectroscopic methods. The structures of the isolated phytochemicals were established by analysis of their spectroscopic data, as compared to that of reported data. Tyrosinase inhibitory activity was also tested on the extracts and selected compounds using mushroom tyrosinase as the enzyme. Results: Fractionation and purification of the extracts of Piper caninum and Piper magni­baccum afforded nine known compounds which were cepharanone A (1), cepharadione A (2), aristolactam AII (3), 5,7-dimethoxyflavone (4), 24-methylenecycloartan-3-one (5), β-sitosterol (6), piperumbellactam A (7), 24S-ethylcholesta-5,22,25-trien-3β-ol (8) and stigmast-3,6-dione (9). Ethyl acetate extracts from leaves of P. magnibaccum gave the highest inhibition value at 48.35%, while the tested compounds displayed weak tyrosinase activity compared to the positive control, kojic acid. Conclusion: These phytochemical results suggested that the extracts could assist as a potential source of bioactive compounds. Further research is needed in which the extract could possibly be exploited for pharmaceutical use.


2013 ◽  
Vol 54 (1) ◽  
pp. 10 ◽  
Author(s):  
Chen-Tien Chang ◽  
Wen-Lun Chang ◽  
Jaw-Cherng Hsu ◽  
Ying Shih ◽  
Su-Tze Chou

2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Nguyen Hai Dang ◽  
Pham Huong Nhung ◽  
Bui Thi Mai Anh ◽  
Dinh Thi Thu Thuy ◽  
Chau Van Minh ◽  
...  

Background. Inhibition ofα-glucosidase is an important factor to control postprandial hyperglycemia in type 2 diabetes mellitus.Citrusessential oils (CEO) are among the most widely used essential oils, and some of them exhibited promising antidiabetic effect. However, theα-glucosidase inhibition of CEO has not been investigated so far. The present work aims to evaluate theα-glucosidase inhibition of essential oils from six VietnameseCitruspeels.Methods. The chemical composition of essential oils obtained by hydrodistillation from sixCitruspeels was analyzed by GC-MS. All essential oils were tested for their inhibitory activity onα-glucosidase usingp-nitrophenyl-α-D-glucopyranoside as substrate.Results. In Buddha’s hand and lime peels, the major components were limonene (59.0–61.31%) andγ-terpinene (13.98–23.84%) while limonene (90.95–95.74%) was most abundant in pomelo, orange, tangerine, and calamondin peels. Among the essential oils, the Buddha’s hand oil showed the most significantα-glucosidase inhibitory effect with the IC50value of 412.2 μg/mL. The combination of the Buddha’s hand essential oil and the antidiabetic drug acarbose increased the inhibitory effect.Conclusions. The results suggested the potential use of Buddha’s hand essential oil as an alternative in treatment of type 2 diabetes mellitus.


Author(s):  
Wan Mohd Nuzul Hakimi Wan Salleh ◽  
Muhammad Helmi Nadri ◽  
Shamsul Khamis

This study was aimed to investigate the chemica l compositions and lipoxygenase inhibitory activity of the essential oil from Alstonia angustiloba growing in Malaysia. The essential oils were obtained by hydrodistillation and fully characterized by gas chromatography and gas chromatography-mass spectrometry. Analysis of the A. angustiloba essential oil resulted in the identification of twenty-five chemical components, attributed 90.8% of the total oil. The most abundant components of A. angustiloba oil were linalool (21.2%), 1,8-cineole (16.8%), α-terpineol (9.5%), terpinene-4-ol (8.5%), β-caryophyllene (6.2%), and caryophyllene oxide (5.2%). The essential oil displayed moderate activity towards lipoxygenase activity with IC50 value of 45.8 μg/mL.


Sign in / Sign up

Export Citation Format

Share Document