scholarly journals In Hepatocellular Carcinoma, miRNA-296-3p Targets MSL2 and Suppresses Cell Proliferation and Invasion

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xiaocui Li ◽  
Min An ◽  
Zhenjun Gao

Hepatocellular carcinoma (HCC) is the third-highest cause of cancer-related death in the world. miRNAs have a role in cell division, differentiation, and death biological processes. They are typically dysregulated in cancers, affecting tumor progression. miRNA-296-3p appears to play a crucial role in cancer control, according to new research. However, its expression and roles in HCC are unknown. This study used qRT-PCR and western blotting to detect the miRNA-296-3p and male-specific lethal 2 (MSL2) expression. In addition, cell proliferation, migration, invasion, and apoptosis were studied using CCK-8, flow cytometric analysis, colony formation assay, wound healing test, and transwell assays. The results show that miRNA-296-3p is underexpressed in HCC cell lines, particularly in Huh-7 and HepG2 cells. miRNA-296-3p overexpression lowers the ability of HCC cells to proliferate, migrate, and invade while increasing cell death. Luciferase reporter experiments revealed that the MSL2 is a direct target of miRNA-296-3p. Furthermore, overexpression of miRNA-296-3p reduced MSL2 mRNA and protein levels considerably, according to our findings. Furthermore, the rescue experiments showed that the MSL2 overexpression partially blocked the inhibition effects of miRNA-296-3p mimic on the proliferation and migration of HCC cells. The above results show that miRNA-296-3p may have a repressive effect in HCC by targeting MSL2 and could be used as a therapeutic target for HCC treatment.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yarong Guo ◽  
Bao Chai ◽  
Junmei Jia ◽  
Mudan Yang ◽  
Yanjun Li ◽  
...  

Abstract Objective Dysregulation of KLF7 participates in the development of various cancers, but it is unclear whether there is a link between HCC and aberrant expression of KLF7. The aim of this study was to investigate the role of KLF7 in proliferation and migration of hepatocellular carcinoma (HCC) cells. Methods CCK8, colony growth, transwell, cell cycle analysis and apoptosis detection were performed to explore the effect of KLF7, VPS35 and Ccdc85c on cell function in vitro. Xenografted tumor growth was used to assess in vivo role of KLF7. Chip-qPCR and luciferase reporter assays were applied to check whether KLF7 regulated VPS35 at transcriptional manner. Co-IP assay was performed to detect the interaction between VPS35 and Ccdc85c. Immunohistochemical staining and qRT-PCR analysis were performed in human HCC sampels to study the clinical significance of KLF7, VPS35 and β-catenin. Results Firstly, KLF7 was highly expressed in human HCC samples and correlated with patients’ differentiation and metastasis status. KLF7 overexpression contributed to cell proliferation and invasion of HCC cells in vitro and in vivo. KLF7 transcriptional activation of VPS35 was necessary for HCC tumor growth and metastasis. Further, co-IP studies revealed that VPS35 could interact with Ccdc85c in HCC cells. Rescue assay confirmed that overexpression of VPS35 and knockdown of Ccdc85c abolished the VPS35-medicated promotion effect on cell proliferation and invasion. Finally, KLF7/VPS35 axis regulated Ccdc85c, which involved in activation of β-catenin signaling pathway, confirmed using β-catenin inhibitor, GK974. Functional studies suggested that downregulation of Ccdc85c partly reversed the capacity of cell proliferation and invasion in HCC cells, which was regulated by VPS35 upregulation. Lastly, there was a positive correlation among KLF7, VPS35 and active-β-catenin in human HCC patients. Conclusion We demonstrated that KLF7/VPS35 axis promoted HCC cell progression by activating Ccdc85c-medicated β-catenin pathway. Targeting this signal axis might be a potential treatment strategy for HCC.


2021 ◽  
Vol 20 ◽  
pp. 153303382110330
Author(s):  
Zhenzhao Luo ◽  
Yue Fan ◽  
Xianchang Liu ◽  
Shuiyi Liu ◽  
Xiaoyu Kong ◽  
...  

Background: Previous studies reported that N-myc downstream-regulated gene 1 (NDRG1) was upregulated in various cancer tissues and decreased expression of miR-188-3p and miR-133b could suppress cell proliferation, metastasis, and invasion and induce apoptosis of cancer cells. However, the molecular mechanism of NRDG1 involved in hepatocellular carcinoma (HCC) tumorigenesis is still unknown. Methods: The expressions of miR-188-3p, miR-133b, and NRDG1 in HCC tissues and cells were quantified by qRT-PCR and Western blot. MTT assay and transwell invasion assay were performed to evaluate cell growth and cell migration, respectively. Luciferase reporter assay were performed to determine whether miR-188-3p and miR-133b could directly bind to NRDG1 in HCC cells. Results: The results showed that NRDG1 was upregulated and these 2 microRNAs were downregulated in HCC tissues. NRDG1 was negatively correlated with miR-188-3p and miR-133b in HCC tissues. MiR-188-3p and miR-133b were demonstrated to directly bind to 3′UTR of NRDG1 and inhibit its expression. Upregulation of miR-188-3p and miR-133b reduced NRDG1 expression in hepatocellular carcinoma cell lines, which consequently inhibited cell growth and cell migration. Conclusions: Our finding suggested that miR-188-3p and miR-133b exert a suppressive effect on hepatocellular carcinoma proliferation, invasion, and migration through downregulation of NDRG1.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Xiaoguang Gu ◽  
Jianan Zhang ◽  
Yajuan Ran ◽  
Hena Pan ◽  
JinHong Jia ◽  
...  

AbstractCircular RNAs have been reported to play significant roles in regulating pathophysiological processes while also guiding clinical diagnosis and treatment of hepatocellular carcinoma (HCC). However, only a few circRNAs have been identified thus far. Herein, we investigated the role of a specific closed-loop structure of hsa_circ_101555 that was generated by back-splicing of the host gene casein kinase 1 gamma 1 (CSNK1G1) in the development and proliferation of HCC. We investigated the expression of Hsa_circ_101555 in HCC and normal tissues using bioinformatics. The expression level of hsa_circ_101555 was further detected by fluorescence in situ hybridization and qRT-PCR in ten HCC patients. Transwell, migration, WST-1 assays, and colony formation assays were used to evaluate the role of hsa_circ_101555 in HCC development and proliferation. The regulatory mechanisms of hsa_circ_101555 in miR-145-5p and CDCA3 were determined by dual luciferase reporter assay. A mouse xenograft model was also used to determine the effect of hsa_circ_101555 on HCC growth in vivo. hsa_circ_101555 showed greater stability than the linear RNA; while in vitro and in vivo results demonstrated that hsa_circ_101555 silencing significantly suppressed cell proliferation, migration, and invasion of HCC cells. Rescue experiments further demonstrated that suppression of miR-145-5p significantly attenuated the biological effects of hsa_circ_101555 knockdown in HCC cells. We also identified a putative oncogene CDCA3 as a potential miR-145-5p target. Thus, our results demonstrated that hsa_circ_101555 might function as a competing endogenous RNA of miR-145-5p to upregulate CDCA3 expression in HCC. These findings suggest that hsa_circ_101555 may be a potential therapeutic target for patients with HCC.


2020 ◽  
Vol 98 (3) ◽  
pp. 362-369
Author(s):  
Qigang Xu ◽  
Wei Lin ◽  
Chonglin Tao ◽  
Xiaming Huang ◽  
Junjian Li

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the human digestive system, and has been recognized as a serious threat to public health worldwide. This study explored the role of chondroitin polymerizing factor (CHPF) in the development and metastasis of HCC. Immunohistochemistry analysis was performed to detect CHPF expression in HCC tissues and para-carcinoma tissues. qRT-PCR and Western blot analysis were used to determine the mRNA and protein expression of CHPF. MTT assays, colony formation assays, and flow cytometry were used to evaluate the cell proliferation, colony formation, and cell apoptosis, respectively. Wound-healing and Transwell assays were performed to evaluate cell migration. The results show that CHPF was not only up-regulated in HCC tissues compared with para-carcinoma tissues, but was also related with more advanced stages of HCC. Further studies revealed that CHPF knockdown significantly inhibited cell proliferation and colony formation, and induce cell apoptosis of HCC cells. Moreover, suppressing the expression of CHPF reduced the migration and invasiveness of HCC cells. In conclusion, we demonstrated that CHPF plays important roles in the development and progression of HCC, and high expression levels of HCC may be related with poorer prognosis. The results from this study may provide a potential therapeutic target for HCC treatment.


2020 ◽  
Vol 19 ◽  
pp. 153303382095702
Author(s):  
Xue-zhen Song ◽  
Xiao-ning Ren ◽  
Xiao-jun Xu ◽  
Xiao-xuan Ruan ◽  
Yi-li Wang ◽  
...  

Hepatocellular carcinoma (HCC) is a severe disease with high mortality in the world. Emerging evidence has suggested that lncRNAs play an important role in cancer progression, including HCC. This study aimed to comprehensively investigate the effect of lncRNA RHPN1 antisense RNA 1 (RHPN1-AS1) on HCC and its underlying molecular mechanism. In this study, we evaluated the expressions of lncRNA RHPN1-AS1 and miR-7-5p by qRT-RCR in both HCC tissue and HCC cells. Our findings showed that lncRNA RHPN1-AS1 was upregulated in HCC tissue and HCC cells, while miR-7-5p was downregulated. LncRNA RHPN1-AS1 expression in HCC patients was closely related to vascular invasion, tumor-node-metastasis (TNM) stage and barcelona clinic liver cancer (BCLC) stage. Furthermore, we quantified cell clone-formation ability, proliferation, migration and invasion of HCCLM3 and MHCC97 H cells using several assays (colony formation assay, 5-Ethynyl-2′-deoxyuridine (EdU) assay and transwell assay, respectively). Functional experiments confirmed that silencing lncRNA RHPN1-AS1 inhibited cell proliferation, migration and invasion in HCCLM3 and MHCC97 H cells. After that, bioinformatics analysis, dual luciferase reporter gene assay, qRT-PCR and western blot were used to investigate the molecular mechanism of lncRNA RHPN1-AS1 on HCC. Mechanistically, the rescue experiments demonstrated that miR-7-5p inhibitor reversed the inhibition effect of silencing lncRNA RHPN1-AS1 on HCCLM3 cells proliferation, migration and invasion. Moreover, silencing lncRNA RHPN1-AS1 also inhibited the activation of PI3K/AKT/mTOR pathway. Taken together our findings demonstrated that lncRNA RHPN1-AS1 could facilitate cell proliferation, migration and invasion via targeting miR-7-5p and activating PI3K/AKT/mTOR pathway in HCC.


2021 ◽  
Vol 11 ◽  
Author(s):  
Hua Ren ◽  
Zhi-cheng Wei ◽  
Yan-xia Sun ◽  
Chun-yan Qiu ◽  
Wen-jue Zhang ◽  
...  

BackgroundLong intergenic non-protein coding RNA 882 (LINC00882) are abnormally expressed in several tumors. Our research aimed to uncover the functions and the potential mechanisms of LINC00882 in hepatocellular carcinoma (HCC) progression.MethodsRT-qPCR was applied to identify LINC00882 and miR-214-3p levels in HCC specimens and cells. Luciferase reporter was applied for the exploration of whether activating transcription factor 2 (ATF2) could bind to the promoter region of LINC00882. Cell proliferation, invasion, and migration were evaluated. In vivo tumor xenograft models were constructed to assess tumorigenicity. RT-PCR, Western blot and Luciferase reporter assays were conducted to examine the regulatory relationships among LINC00882, miR-214-3p and ATF2.ResultsLINC00882 was markedly upregulated in HCC cells and clinical specimens. Additionally, ATF2 could bind directly to the LINC00882 promoter region and activate its transcription. Loss-of-function studies further demonstrated that LINC00882 knockdown inhibited proliferation, invasion, and migration of HCC cells. Mechanistically, LINC00882 adsorbed miR-214-3p, thus promoting the expressions of CENPM. Rescue assays demonstrated that functions of LINC00882 deficiency in HCC cells were reversed through suppressing miR-214-3p.ConclusionOur group identified a novel regulatory axis of ATF2/LINC00882/miR-214-3p/CENPM, which may provide potential therapeutic targets for HCC.


2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Limin Ma ◽  
Changming Tao ◽  
Yingying Zhang

Objective. Hepatocellular carcinoma (HCC) is a kind of solid and highly aggressive malignant tumor with poor prognosis. MicroRNA (miRNA/miR) has been confirmed to be involved in HCC development. The current study focused on the functions and mechanisms of miR-517c in HCC. Methods. Expressions of miR-517c and Karyopherin α2 (KPNA2) mRNA in HCC cell lines and tissue samples were examined using quantitative real-time polymerase chain reaction (qRT-PCR). Western blot was conducted for detections of epithelial-to-mesenchymal transition (EMT) and PI3K/AKT markers. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and Transwell assays were utilized to investigate the influence of miR-517c on HCC cell proliferation, invasion, and migration. TargetScan and luciferase reporter assay were performed to search for the potential target gene of miR-517c. Results. We demonstrated that miR-517c expressions were decreased in HCC tissues and cells. Moreover, the clinical analysis showed that decreased miR-517c expressions in HCC tissues correlated with shorter overall survival and malignant clinicopathologic features of HCC patients. MTT assay showed that miR-517c upregulation prominently repressed HCC cell proliferation. In addition, miR-517c restoration could significantly suppress HCC cell invasion and migration as demonstrated by Transwell assays. We also found that miR-517c directly targeted KPNA2 and regulated the PI3K/AKT pathway and EMT, exerting prohibitory functions in HCC. Conclusion. Taken together, this study stated that miR-517c inhibited HCC progression via regulating the PI3K/AKT pathway and EMT and targeting KPNA2 in HCC, providing a novel insight into HCC treatment.


Author(s):  
Hui Sun ◽  
Junwei Zhai ◽  
Li Zhang ◽  
Yingnan Chen

IntroductionEmerging evidence suggests that circular RNAs (circRNAs) play critical roles in tumorigenesis. However, the roles and molecular mechanisms of circRNA leucine-rich repeat immunoglobulin domain-containing protein 3 (circ_LRIG3) in hepatocellular carcinoma (HCC) has not been investigated.Material and methodsThe expression levels of circ_LRIG3, miR-223-3p, and mitogen-activated protein kinase kinase 6 (MAP2K6) were determined by qRT-PCR. Flow cytometry was applied to determine the cell cycle distribution and apoptosis. Cell proliferation, migration and invasion were assessed by MTT, colony formation, and transwell assays. Western blot assay was employed to measure the protein levels of the snail, E-cadherin, MAP2K6, mitogen-activated protein kinase (MAPK), phospho-MAPK (p-MAPK), extracellular signal-regulated kinases (ERKs), and phospho-ERKs (p- ERKs). The relationship between miR-223-3p and circ_LRIG3 or MAP2K6 was predicted by bioinformatics tools and verified by dual-luciferase reporter assay. A xenograft tumor model was established to confirm the functions of circ_LRIG3 in vivo.ResultsCirc_LRIG3 and MAP2K6 expression were enhanced while miR-223-3p abundance was reduced in HCC tissues and cells. Knockdown of circ_LRIG3 inhibited cell proliferation, metastasis, and increasing apoptosis. MiR-223-3p was a target of circ_LRIG3, and its downregulation reversed the inhibitory effect of circ_LRIG3 knockdown on the progression of HCC cells. Moreover, MAP2K6 could bind to miR-223-3p, and MAP2K6 upregulation also abolished the suppressive impact of circ_LRIG3 interference on progression of HCC cells. Additionally, the silence of circ_LRIG3 suppressed the activation of the MAPK/ERK pathway and tumor growth by upregulating miR-223-3p and downregulating MAP2K6.ConclusionsCirc_LRIG3 knockdown inhibited HCC progression through regulating miR-223-3p/MAP2K6 axis and inactivating MAPK/ERK pathway.


2021 ◽  
Author(s):  
Hai-Long Li ◽  
Jie Shi ◽  
Qi Qi ◽  
Yue Huang ◽  
Chi Liu ◽  
...  

Abstract MiR-130a-3p has been certified to have low expression in several types of tumors. However, the function of miR-130a-3p in glucose metabolism and hepatocellular carcinoma progression is still elusive. Here we report that miR-130a-3p has explicitly low expression in human HCC tissues and cells and is closely related to the patient's tumor size and grade. Overexpression of miR-130a-3p significantly inhibits the glucose metabolism, proliferation and migration of HCC cells in vitro. In order to further study the effects of miR-130a-3p in the glucose metabolism of HCC cells, we found that overexpression of miR-130a-3p significantly inhibited the expression of pyruvate dehydrogenase kinase 1 (PDK1). Consistently, we confirmed that PDK1 is the target gene of miR-130a-3p through dual luciferase reporter gene assays. Cell rescue experiments showed that PDK1 inhibitors reversed the enhancement of cell proliferation, migration and glucose metabolism by miR-130a-3p inhibitor in Hep3B cells. In terms of mechanism, overexpression of miR-130a-3p targeted and inhibited the expression of PDK1, after which pyruvate dehydrogenase (PDH) is activated, thus glycolysis is inhibited, the production of lactic acid and ATP is reduced, and the ability to proliferate and migrate in HCC cells is weakened. In conclusion, our study highlights efforts to target PDK1 and miR-130a-3p as potential therapeutic strategies for the treatment of HCC.


2014 ◽  
Vol 92 (2) ◽  
pp. 152-162 ◽  
Author(s):  
Yanrui Sheng ◽  
Shijia Ding ◽  
Ke Chen ◽  
Juan Chen ◽  
Sen Wang ◽  
...  

MicroRNA-101(miR-101) has been shown to be down-regulated in hepatocellular carcinoma (HCC). The hepatitis B virus (HBV) is a major risk factor in the development and progression of HCC. However, the correlation between HBV and miR-101 has not yet been fully elucidated. In this study, we reported that HBV could repress miR-101-3p by inhibiting its promoter activity and identified the potential effects of miR-101-3p on some important biological properties of HCC cells by targeting Rap1b. Dual-luciferase reporter assays showed that HBV down-regulated miR-101-3p by inhibiting its promoter activity. Down-regulation of miR-101-3p promoted cell proliferation, migration, and reduced apoptosis, and resulted in up-regulation of Rap1b, while overexpression of miR-101-3p inhibited these processes. Moreover, overexpression of Rap1b was able to reverse the suppressed cell proliferation and migration mediated by miR-101-3p. Our data showed that HBV down-regulated miR-101-3p expression by inhibiting its promoter activity, which resulted in up-regulation of Rap1b, and down-regulation of miR-101-3p or up-regulation of Rap1b promoted proliferation and migration of HCC cells. This provides a new understanding of the mechanism of HBV-related HCC pathogenesis and the potential application of miR-101-3p in cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document