scholarly journals TXNRD1: A Key Regulator Involved in the Ferroptosis of CML Cells Induced by Cysteine Depletion In Vitro

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Shuhan Liu ◽  
Wei Wu ◽  
Qiaoqian Chen ◽  
Zhiyuan Zheng ◽  
Xiandong Jiang ◽  
...  

Cysteine metabolism plays a critical role in cancer cell survival. Cysteine depletion was reported to inhibit tumor growth and induce pancreatic cancer cell ferroptosis. Nevertheless, the effect of cysteine depletion in chronic myeloid leukemia (CML) remains to be explored. In this work, we showed that cysteine depletion can induce K562/G01 but not K562 cell death in the form of ferroptosis. However, the glutathione (GSH)/glutathione peroxidase 4 (GPX4) pathways of the two CML cell lines were both blocked after cysteine depletion. This unexpected outcome guided us to perform RNA-Seq to screen the key genes that affect the sensitivity of CML cells to cysteine depletion. Excitingly, thioredoxin reductase 1 (TXNRD1), which related to cell redox metabolism, was significantly upregulated in K562/G01 cells after cysteine depletion. We further inferred that the upregulation is negatively feedback by the enzyme activity decrease of TXNRD1. Then, we triggered the ferroptosis by applying TXNRD1 shRNA and TXNRD1 inhibitor auranofin in K562 cells after cysteine depletion. In summary, we have reason to believe that TXNRD1 is a key regulator involved in the ferroptosis of CML cells induced by cysteine depletion in vitro. These findings highlight that cysteine depletion serves as a potential therapeutic strategy for overcoming chemotherapy resistance CML.

Cancers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1399
Author(s):  
Shu-Huey Chen ◽  
Yao-Yu Hsieh ◽  
Huey-En Tzeng ◽  
Chun-Yu Lin ◽  
Kai-Wen Hsu ◽  
...  

Chronic myelogenous leukemia (CML) is the most common type of leukemia in adults, and more than 90% of CML patients harbor the abnormal Philadelphia chromosome (Ph) that encodes the BCR-ABL oncoprotein. Although the ABL kinase inhibitor (imatinib) has proven to be very effective in achieving high remission rates and improving prognosis, up to 33% of CML patients still cannot achieve an optimal response. Here, we used CRISPR/Cas9 to specifically target the BCR-ABL junction region in K562 cells, resulting in the inhibition of cancer cell growth and oncogenesis. Due to the variety of BCR-ABL junctions in CML patients, we utilized gene editing of the human ABL gene for clinical applications. Using the ABL gene-edited virus in K562 cells, we detected 41.2% indels in ABL sgRNA_2-infected cells. The ABL-edited cells reveled significant suppression of BCR-ABL protein expression and downstream signals, inhibiting cell growth and increasing cell apoptosis. Next, we introduced the ABL gene-edited virus into a systemic K562 leukemia xenograft mouse model, and bioluminescence imaging of the mice showed a significant reduction in the leukemia cell population in ABL-targeted mice, compared to the scramble sgRNA virus-injected mice. In CML cells from clinical samples, infection with the ABL gene-edited virus resulted in more than 30.9% indels and significant cancer cell death. Notably, no off-target effects or bone marrow cell suppression was found using the ABL gene-edited virus, ensuring both user safety and treatment efficacy. This study demonstrated the critical role of the ABL gene in maintaining CML cell survival and tumorigenicity in vitro and in vivo. ABL gene editing-based therapy might provide a potential strategy for imatinib-insensitive or resistant CML patients.


Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1733
Author(s):  
Shibo Sun ◽  
Yici Zhang ◽  
Weiping Xu ◽  
Yue Zhang ◽  
Rui Yang ◽  
...  

Food colorants are widely used by humans in food production and preparation; however, their potential toxicity requires an in-depth analysis. In this study, five out of 15 commercial food colorants, namely, lutein, betanin, caramel, crocin and chlorophyll, significantly inhibited wild type selenoprotein thioredoxin reductase 1 (TrxR1, TXNRD1) in vitro. The hyperactive Sec498 residue of TrxR1 was targeted by those five colorants, which was confirmed by the site-directed mutagenesis of TrxR1. Furthermore, two colorants, chlorophyll and betanin, triggered the oligomerization of TrxR1. A chlorophyll-derived compound, chlorophyllin, irreversibly inhibited the 5,5′-dithiobis-2-nitrobenzoic acid (DTNB) reducing activity of TrxR1 with Kinact = 6.96 × 10−3 ± 0.49 × 10−3 µM−1 min−1. Moreover, chlorophyllin reduced the cellular TrxR activity, leading to reactive oxygen species (ROS) accumulation and, subsequently, promoting cancer cell death. In conclusion, this study might contribute to understand the food safety of commercial colorants and provide chemotherapeutic compounds by targeting TrxR1.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3286
Author(s):  
Dariusz Lachowski ◽  
Carlos Matellan ◽  
Ernesto Cortes ◽  
Alberto Saiani ◽  
Aline F. Miller ◽  
...  

The tumor microenvironment plays a critical role in modulating cancer cell migration, metabolism, and malignancy, thus, highlighting the need to develop in vitro culture systems that can recapitulate its abnormal properties. While a variety of stiffness-tunable biomaterials, reviewed here, have been developed to mimic the rigidity of the tumor extracellular matrix, culture systems that can recapitulate the broader extracellular context of the tumor microenvironment (including pH and temperature) remain comparably unexplored, partially due to the difficulty in independently tuning these parameters. Here, we investigate a self-assembled polypeptide network hydrogel as a cell culture platform and demonstrate that the culture parameters, including the substrate stiffness, extracellular pH and temperature, can be independently controlled. We then use this biomaterial as a cell culture substrate to assess the effect of stiffness, pH and temperature on Suit2 cells, a pancreatic cancer cell line, and demonstrate that these microenvironmental factors can regulate two critical transcription factors in cancer: yes-associated protein 1 (YAP) and hypoxia inducible factor (HIF-1A).


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1366
Author(s):  
Russell Hughes ◽  
Xinyue Chen ◽  
Natasha Cowley ◽  
Penelope D. Ottewell ◽  
Rhoda J. Hawkins ◽  
...  

Metastatic breast cancer in bone is incurable and there is an urgent need to develop new therapeutic approaches to improve survival. Key to this is understanding the mechanisms governing cancer cell survival and growth in bone, which involves interplay between malignant and accessory cell types. Here, we performed a cellular and molecular comparison of the bone microenvironment in mouse models representing either metastatic indolence or growth, to identify mechanisms regulating cancer cell survival and fate. In vivo, we show that regardless of their fate, breast cancer cells in bone occupy niches rich in osteoblastic cells. As the number of osteoblasts in bone declines, so does the ability to sustain large numbers of breast cancer cells and support metastatic outgrowth. In vitro, osteoblasts protected breast cancer cells from death induced by cell stress and signaling via gap junctions was found to provide important juxtacrine protective mechanisms between osteoblasts and both MDA-MB-231 (TNBC) and MCF7 (ER+) breast cancer cells. Combined with mathematical modelling, these findings indicate that the fate of DTCs is not controlled through the association with specific vessel subtypes. Instead, numbers of osteoblasts dictate availability of protective niches which breast cancer cells can colonize prior to stimulation of metastatic outgrowth.


2008 ◽  
Vol 7 (7) ◽  
pp. 1037-1043 ◽  
Author(s):  
Yu Shuyi ◽  
Duan Juping ◽  
Zhou Zhiqun ◽  
Pang Qiong ◽  
Ji Wuyang ◽  
...  

2014 ◽  
Vol 2 (4) ◽  
pp. 247-259

Semaphorins are a large family of genes involved in the development and morphogenesis of the nervous system. SEMA5A has been reported as a bi-functional molecule, acting as both oncogene and tumor suppressor in different types of cancer. High expression levels of SEMA5A and its receptor, Plexin-B3, were associated with aggressiveness in pancreatic and prostate cancers. Our previous study in ovarian cancer metastasis indicates that FAK knock-down can suppress ovarian cancer cells migration and invasion. We hypothesized that SEMA5A expression promotes ovarian cancer invasion and metastasis. We investigated the expression of SEMA5A in patients with metastatic ovarian cancer (n = 43), localized tumor (n = 37) and normal ovarian tissue (n = 12) from non-malignant diseases as control with different histopathological characteristics. For Silencing of SEMA5A in vitro, we treated human ovarian cancer cells (OVCAR-3, A2780/CP70) with miR-27a and miR-27b. We observed significantly higher expression of SEMA5A protein (P= 0.001) in metastatic ovarian cancer tissue associated with poor overall survival outcomes compared to localized ovarian cancer and control. In vitro silencing of SEMA5A reduced migration and invasion of ovarian cancer cell. Our data offer opportunities for the therapeutic modulation and biomarker of metastatic ovarian cancer.


2020 ◽  
Author(s):  
Guiyang Wu ◽  
Chongshan Wu ◽  
Fubo Ye ◽  
Xiongwen Zhu ◽  
Zaiping Chen

Abstract Background Glucose metabolism transformation plays critical role in cancer cell malignancies maintenance. Aberrant cancer cell metabolism is considered to be the hallmark of cancer. S100A4 has been identified as an oncogene in a variety of cancers. However, its role in the cancer cell glucose reprogramming has been seldom reported. The aim of this study was to examine the role of S100A4 in aerobic glycolysis in colorectal cancer (CRC). Methods We investigated S100A4 expression in 224 cases of primary CRC and matched normal colonic tissue specimens, and explored the underlying mechanisms of altered S100A4 expression as well as the impact of this altered expression on CRC growth and glycolysis using in vitro and animal models of CRC. Results S100A4 was more highly expressed in CRC tissues than in the adjacent normal tissues (59.4% vs 17.4%, P <0.05). Higher S100A4 expression was associated with advanced node stage ( P =0.018) and larger tumor size ( P =0.035). A Cox proportional hazards model suggested that S100A4 expression was an independent prognostic factor for both OS (HR: 3.967, 95%CI: 1.919-8.200, P <0.001) and DFS (HR: 4.350, 95%CI: 2.264-8.358, P <0.001) in CRC after surgery. Experimentally, silencing S100A4 expression significantly decreased the growth and glycolysis rate of CRC both in vitro and in vivo . Mechanically, S100A4 could affect the hypoxia-inducible factor (HIF)-1α activity as demonstrated by the HIF-1α response element–luciferase activity in CRC cells. Conclusions These results disclose a novel role for S100A4 in reprogramming the metabolic process in CRC by affecting the HIF-1α activity and provide potential prognostic predictors for CRC.


Sign in / Sign up

Export Citation Format

Share Document