scholarly journals Network Pharmacology-Based Strategy to Investigate Pharmacological Mechanisms of the Drug Pair Astragalus-Angelica for Treatment of Male Infertility

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Feng Zhao ◽  
Yingjun Deng ◽  
Guanchao Du ◽  
Shengjing Liu ◽  
Jun Guo ◽  
...  

Background. The traditional Chinese medicines Astragalus and Angelica are often combined to treat male infertility, but the specific therapeutic mechanism is not clear. Therefore, this study applies a network pharmacology approach to investigate the possible mechanism of action of the drug pair Astragalus-Angelica (PAA) in the treatment of male infertility. Methods. Relevant targets for PAA treatment of male infertility are obtained through databases. Protein-protein interactions (PPIs) are constructed through STRING database and screen core targets, and an enrichment analysis is conducted through the Metascape platform. Finally, molecular docking experiments were carried out to evaluate the affinity between the target protein and the ligand of PAA. Results. The active ingredients of 112 PAA, 980 corresponding targets, and 374 effective targets of PAA for the treatment of male infertility were obtained, which are related to PI3K-Akt signaling pathway, HIF-1 signaling pathway, AGE-RAGE signaling pathway, IL-17 signaling pathway, and thyroid hormone signaling pathway. Conclusion. In this study, using a network pharmacology method, we preliminarily analyzed the effective components and action targets of the PAA. We also explored the possible mechanism of action of PAA in treating male infertility. They also lay a foundation for expanding the clinical application of PAA and provide new ideas and directions for further research on the mechanisms of action of the PAA and its components for male infertility treatment.

2020 ◽  
Vol 9 (6) ◽  
pp. 385-391
Author(s):  
T Poongodi ◽  
◽  
TH Nazeema ◽  

The Multi-targeted action of Polyherbal formulation is responsible for enhanced therapeutic efficacy in combating various diseases. But, understanding the mode of action of herbal medicine remains a challenge because of its complex metabolomics. Network pharmacology-based approach enables to explore the mechanism of action of polyherbal formulation in biological system. In present investigation, we have explored the molecular mechanism of action of the Polyherbal formulation MKA comprising of three botanicals Mimusops elengi L., Kedrostis foetidissima (Jacq.) Cogn. and Artemisia vulgaris L. in treating respiratory diseases by network pharmacology-based approach. The protein targets were mined from Binding database for the bioactive present in MKA. The disease associated targets were identified using Open target Platform. Based on ligand-target interactions, it was interpreted that MKA could alleviate the symptoms of respiratory disease by multiple mechanisms like EGFR inhibition by Quercetin and Quercetin-3-O-rhamnoside, KDR inhibition by Quercetin, STAT-3 inhibition by β-sitosterol- β-Dglucoside, TRPV1 inhibition by phytol acetate, etc. The Protein-protein interaction (PPI) network was constructed using STRING database. KEGG pathway based functional enrichment was also predicted for the PPI network. It was found that multiple ligand-target interactions and protein-protein interactions is responsible for pharmacological activity of MKA in respiratory diseases.


2017 ◽  
Vol 2017 ◽  
pp. 1-10
Author(s):  
Tianhong Wang ◽  
Jian Yang ◽  
Xing Chen ◽  
Kehui Zhao ◽  
Jing Wang ◽  
...  

In clinical practice at Tibetan area of China, Traditional Tibetan Medicine formula Wuwei-Ganlu-Yaoyu-Keli (WGYK) is commonly added in warm water of bath therapy to treat rheumatoid arthritis (RA). However, its mechanism of action is not well interpreted yet. In this paper, we first verify WGYK’s anti-RA effect by an animal experiment. Then, based on gene expression data from microarray experiments, we apply approaches of network pharmacology to further reveal the mechanism of action for WGYK to treat RA by analyzing protein-protein interactions and pathways. This study may facilitate our understanding of anti-RA effect of WGYK from perspective of network pharmacology.


2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Kuiting Guo ◽  
Tiancheng Wang ◽  
Enjing Luo ◽  
Xiangyang Leng ◽  
Baojin Yao

Deer velvet antlers are the young horns of male deer that are not ossified and densely overgrown. Velvet antler and its preparations have been widely used in the treatment of postmenopausal osteoporosis (PMOP) in recent years, although its mechanism of action in the human body remains unclear. To screen the effective ingredients and targets of velvet antler in the treatment of PMOP using network pharmacology and to explore the potential mechanisms of velvet antler action in such treatments, we screened the active ingredients and targets of velvet antler in the BATMAN-TCM database. We also screened the relevant targets of PMOP in the GeneCards and OMIM databases and then compared the targets at the intersection of both velvet antler and PMOP. We used Cytoscape 3.7.2 software to construct a network diagram of “disease-drug-components-targets” and a protein-protein interaction (PPI) network through the STRING database and screened out the core targets; the R language was then used to analyze the shared targets between antler and PMOP for GO-enrichment analysis and KEGG pathway-annotation analysis. Furthermore, we used the professional software Maestro 11.1 to verify the predictive analysis based on network pharmacology. Hematoxylin-eosin (H&E) staining and micro-CT were used to observe the changes in trabecular bone tissue, further confirming the results of network pharmacological analysis. The potentially effective components of velvet antler principally include 17β-E2, adenosine triphosphate, and oestrone. These components act on key target genes such as AKT1, IL6, MAPK3, TP53, EGFR, SRC, and TNF and regulate the PI3K/Akt-signaling and MAPK-signaling pathways. These molecules participate in a series of processes such as cellular differentiation, apoptosis, metabolism, and inflammation and can ultimately be used to treat PMOP; they reflect the overall regulation, network regulation, and protein interactions.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yi-ding Yu ◽  
Yi-ping Xiu ◽  
Yang-fan Li ◽  
Juan Zhang ◽  
Yi-tao Xue ◽  
...  

Radix Astragali and Semen Lepidii (HQ-TLZ) is a commonly used herbal medicine combination for treatment of heart failure, which has a good clinical effect. However, its active components and mechanism of action are not clear, which limits its clinical application and development. In this study, we explored the mechanism of action of HQ-TLZ in the treatment of heart failure based on network pharmacology. We obtained 11 active ingredients and 109 targets from the TCMSP database and SwissTargetPrediction database. Next, we constructed the action network and carried out enrichment analysis. The results showed that HQ-TLZ treatment of heart failure is primarily achieved by regulating the insulin resistance, erbB signaling pathway, PI3K-Akt signaling pathway, and VEGF signaling pathway. After inverse targeting, molecular docking, and literature search, we determined that the equivalent molecular groups of HQ-TLZ in the treatment of heart failure were quercetin and kaempferol. Based on network pharmacology, we reveal the mechanism of action of HQ-TLZ in the treatment of heart failure to a certain extent. At the same time, we determined the composition of the equivalent molecular group. This provides a bridge for the consistency evaluation of natural herbs and molecular compounds, which is beneficial to the development of novel drugs and further research.


2021 ◽  
Author(s):  
tan xin ◽  
Wei Xian ◽  
Xiaorong Li ◽  
Yongfeng Chen ◽  
Jiayi Geng ◽  
...  

Abstract PurposeAtrial fibrillation (AF) is a common atrial arrhythmia. Quercetin (Que) has some advantages in the treatment of cardiovascular disease arrhythmias, but its specific drug mechanism of action needs further investigation. To explore the mechanism of action of Que in AF, core target speculation and analysis were performed using network pharmacology and molecular docking methods.MethodsQue chemical structures were obtained from Pubchem. TCMSP, Swiss Target Prediction, Drugbank , STITCH, Binding DB, Pharmmapper, CTD, GeneCards, DISGENET and TTD were used to obtain drug component targets and AF-related genes, and extract AF from normal tissues by GEO database differentially expressed genes. Then, the intersecting genes were obtained by online Wayne mapping tool. The intersection genes were introduced into the top five targets selected for molecular docking via protein-protein interaction (PPI) network to verify the binding activity between Que and the target proteins. GO and KEGG enrichment analysis of the intersected genes using program R was performed to further screen for key genes and key pathways.ResultsThere were 65 effective targets for Que and AF. Through further screening, the top 5 targets were IL6, VEGFA, JUN, MMP9 and EGFR. Que treatment of AF may involve signaling pathways such as lipid and atherosclerosis pathway, AGE-RAGE signaling pathway in diabetic complications, MAPK signaling pathway and IL-17 signaling pathway. Molecular docking suggests that Que has strong binding to key targets.ConclusionThis study systematically elucidates the key targets of Que treatment for AF and the specific mechanisms through network pharmacology as well as molecular docking, providing a new direction for further basic experimental exploration and clinical treatment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zheng Liu ◽  
Jin-hai Huo ◽  
Wen-ting Dong ◽  
Guo-dong Sun ◽  
Feng-jin Li ◽  
...  

Qinbaiqingfei concentrated pills (QB) are a commonly used medicine for the treatment of mycoplasma pneumonia in China, and the mechanism of action of QB needs to be studied further. Therefore, we use a combination of metabolomics and network pharmacology to clarify the mechanism of QB. Nontarget metabolomics studies were performed on rat serum, urine, and lung tissues, and 56 therapeutic biomarkers were found. Subsequently, the components of QB absorbed into the blood and lung tissues were clarified, and based on this finding, the core target of network pharmacology was predicted. The enrichment analysis of biomarkers–genes finally confirmed their close relationship with the NF-κB signaling pathway. By western blotting expression of the proteins in the lung tissue–related signaling pathways, it is finally confirmed that QB inhibits the NF-κB signaling pathway through SIRT1, IL-10 and MMP9, CTNNB1, EGFR, and other targets. It plays a role in regulating immunity, regulating metabolism, and treating diseases.


2020 ◽  
Vol 1 ◽  
pp. 3
Author(s):  
Wenpan Peng ◽  
Di Han ◽  
Yong Xu ◽  
Fanchao Feng ◽  
Zhichao Wang ◽  
...  

Objective: In the treatment of COVID-19, the application of Lianhua Qingwen Prescription has become growingly widespread, however, the mechanism of action is still unclear. To explore the material basis and mechanism of Lianhua Qingwen Prescription against SARS-CoV-2, to provide a reference for the treatment of COVID-19. Methods: Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), SwissTargetPrediction, and Similarity Ensemble Approach (SEA) database were used to search the chemical constituents and targets of Lianhua Qingwen Prescription. The targets of COVID-19 were screened by GeneCards, Therapeutic Target Database (TTD), and Comparative Toxicogenomics Database (CTD). Cytoscape software was used to construct a “drug-component-target” network diagram and the mechanism of action was predicted by enrichment analysis. Results: Two hundred and twenty four active components, 246 drug therapeutic targets, and 16,611 potential targets of Lianhua Qingwen Prescription were mined out. Moreover, 163 common targets were obtained, including PTGS2, IL6, CASP3, mapk1, EGFR, ACE2, etc. Thirty seven items were obtained by Gene Ontology (GO) enrichment analysis, mainly involving T-cell activation, virus receptor, and inflammatory reaction, etc. One hundred and forty items were obtained by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enriched analysis, including TNF signaling pathway, MAPK signaling pathway, and IL-17 signaling pathway. Conclusion: Compounds such as quercetin and kaempferol play an important role in anti-COVID-19 through the TNF signaling pathway and MAPK signaling pathway.


2021 ◽  
Vol 16 (12) ◽  
pp. 1934578X2110592
Author(s):  
Yi Wen Liu ◽  
Ai Xia Yang ◽  
Li Lu ◽  
Tie Hua Huang

Objective: To explore the potential mechanism of Sini jia Renshen Decoction (SJRD) in the treatment of COVID-19 based on network pharmacology and molecular docking. Methods: The active compounds and potential therapeutic targets of SJRD were collected through the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP). Then a string database was used to build a protein–protein interactions (PPI) network between proteins, and use the David database to perform gene ontology (GO) function enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis on core targets. Then we used Cytoscape software to construct an active ingredients-core target-signaling pathway network, and finally the active ingredients of SJRD were molecularly docked with the core targets to predict the mechanism of SJRD in the treatment of COVID-19. Results: A total of 136 active compounds, 51 core targets and 93 signaling pathways were selected. Molecular docking results revealed that quercetin, 3,22-dihydroxy-11-oxo-delta(12)-oleanene-27-alpha-methoxycarbonyl-29-oic acid, 18α-hydroxyglycyrrhetic acid, gomisin B and ignavine had considerable binding ability with ADRB2, PRKACA, DPP4, PIK3CG and IL6. Conclusions: This study preliminarily explored the mechanism of multiple components,multiple targets,and multiple pathways of SJRD in the treatment of COVID-19 by network pharmacology.


Author(s):  
Qi Zhao ◽  
Hengheng Dai ◽  
Jisheng Wang ◽  
Fei Yan ◽  
Guejin Jang ◽  
...  

Background and Aim: Traditional Chinese medicine (TCM), as a complementary and alternative therapy, has played increasingly important roles in clinical treatment and disease prevention. Zuogui Yin (ZGY) is one of the well-known TCM prescription used for the treatment of male infertility. To fully reveal the potential mechanisms underlying the therapeutic effects of ZGY on male infertility, a network pharmacology approach was conducted at the molecular level. Methods: Network pharmacology approach was used in this study, which mainly included active compound screening, target prediction, gene enrichment analysis and network analysis. Results: The network analysis successfully identified 148 potential active ingredients of ZGY and 155 predicted targets that were associated with male infertility. ZGY might play a role in the treatment of male infertility by regulating ten hub targets (VEGFA, CASP3 , TNF, AKT1, EGF, EGFR, IL-6, MAPK1, TP53 and PTGS2) and six pathways (TNF signaling pathway, PI3K-Akt signaling pathway, FoxO signaling pathway, Toll-like receptor signaling pathway, VEGF signaling pathway and MAPK signaling pathway). Conclusion: This study explored the pharmacological activity and molecular mechanisms of ZGY against male infertility from a holistic perspective. The underlying molecular mechanisms were closely related to the intervention of oxidative stress and apoptosis with CASP3, TP53, AKT1 and MAPK1 being possible targets.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Ruiyin Wang ◽  
Jiangtao Lin

Zhichuanling oral liquid (ZOL) as a preparation of traditional Chinese medicine is widely used for the treatment of asthma in China; therefore, it is necessary to systematically clarify bioactive chemical ingredients and the mechanism of action of ZOL. Information on ZOL ingredients and asthma-related targets was collected, and we used the latest systematic pharmacological methods to construct protein-protein interaction network and compound-target network and then visualized them. Finally, GO and KEGG pathway enrichment analysis was conducted through the clusterProfiler package in the R software. The results showed that 58 bioactive ingredients and 42 potential targets of ZOL related to asthma were identified, following six important components and nine hub genes screened. Further cluster and enrichment analysis suggested that NF-κB signaling pathway, PI3K/Akt signaling pathway, IL-17 signaling pathway, Toll-like receptor signaling pathway, and TNF signaling pathway might be core pathways of ZOL for asthma. Our work successfully predicted the active ingredients and potential targets of ZOL and provided the explanation for the mechanism of action of ZOL for asthma through the systematic analysis, which suggested that ZOL played a major role in many ways including reducing airway inflammation and inhibiting airway remodeling and mucus secretion. Moreover, ZOL combined with glucocorticoids may have some effects on severe asthma.


Sign in / Sign up

Export Citation Format

Share Document