scholarly journals Experimental and Numerical Research on Defective Shield Segment under Cyclic Loading

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Long-gang Tian ◽  
Zhi-qiang Hu ◽  
Jie Chen

The retaining structure of a shield tunnel is usually subjected to static loading; however, cyclic loading such as the vibration loading of the train will act on the lining structure year after year that cannot be neglected. Due to the complex manufacturing and assembling process of the lining segment, initial defects in the segment are inevitable. Such defects will propagate under the cyclic loading such as the train vibration, which may cause a large threat to the shield tunnel system. In this paper, a defective shield tunnel lining segment under cyclic loading is studied by both a full-scale experiment and three-dimensional numerical simulations to investigate its fracture properties and failure mechanism and make a rational estimate of its fatigue life. Results show that crack propagation of the defective shield tunnel segment can be identified as several different stages based on its deformation characteristics, and the failure pattern of the segment is determined by its initial defects. The results by the experiment and numerical investigation are in good agreement for each other.

2011 ◽  
Vol 90-93 ◽  
pp. 2062-2067 ◽  
Author(s):  
Zhan Rui Wu ◽  
Tai Yue Qi ◽  
Lin Zhong

The vibration loads will be produced between wheel and rail on the running of the high-speed Train. The vibration energy will be transferred to the ground formation through the rail, guiding bed and tunnel lining structure, thereby causing vibration between the formation and surface and environmental interference effect problems. Thus the research of related issues caused by the high-speed train vibration has the vital great significance. The train design speed of the Shiziyang shield tunnel for Guangzhou-Shenzhen-Hong Kong passenger dedicated line is up to 350km/h. In this paper the research object is located in the segment of the homogeneous formation of the Shiziyang shield tunnel. The analysis of this paper includes the dynamic response rules of the shield tunnel and formation under the single high-speed train loads and the law of the pore water pressure accumulation and dispersion under train cyclic loading.


Author(s):  
Y M H Ali El-Saie ◽  
R T Fenner

In Part 1, a computational method was described for predicting the performance of pivoted pad thrust bearings. In this second part, computed results are compared with experimental data. Three test cases are considered, which cover the range of bearing sizes normally encountered in practice, from a 150 mm diameter laboratory scale experiment through the main propulsion thrust bearings of a destroyer to a 3 m diameter bearing. Generally good agreement is obtained for both temperatures and film thicknesses.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Long-gang Tian ◽  
Zi-ling Cheng ◽  
Zhi-qiang Hu

Dynamic loads such as the train vibration load usually act on the shield tunnel lining in the long term, which could make the initial flaws in shield segment propagate and gradually weaken the robustness of the tunnel structure. In this paper, a three-dimensional numerical model of shield tunnel lining structure with the initial defect is built to study its dynamic reaction and fatigue crack propagation under the train vibration load. Furthermore, the damage to intact shield segment caused by train vibration load is studied by employing the rain-flow counting method and the Miner damage theory, and a rational fatigue life estimation for the concrete shield tunnel lining is finally made. Results show that crack propagation is influenced by both the train speed and train axle, the higher the train speed, the longer the final crack, and train axle has a larger influence than train speed on the crack propagation in shield tunnel segment. The shield tunnel lining structure of Nanjing Metro Line 5 can meet the demand of working for a hundred years under the current working conditions.


2013 ◽  
Vol 815 ◽  
pp. 240-245
Author(s):  
Chun Shan Yang ◽  
Hai Hong Mo ◽  
Jun Sheng Chen ◽  
Ming Xun Hou

A three-dimensional refined model of composite lining is built with the example of shield tunnel of Xijiang water diversion project in Guangzhou by using finite element software. Segment opening and steel pile deformation characteristics are analyzed. Necessity of light material and steel pile is detailed explained. The results show that the maximal segment opening of composite lining is 0.361 millimeter. The bolts are in elastic state and not appear plastic deformation, so segment without leakage. Steel pipe strain curve is approximate circular symmetry in whole circle. It is necessary to add light material and steel pile, because they can effectively reduce the stress of concrete and prevent cracking.


2014 ◽  
Vol 711 ◽  
pp. 514-519
Author(s):  
Feng Qi Zhu ◽  
Huan Qin Liu ◽  
Jian Zhang

Shield tunning method has been used widely in urban underground engineering. Based on a certain range of Wuhan subway shield tunnel, the subway shield tunnel segment of the internal force and deformation were studied by the load structure method and stratum structure method. Influence of the formation parameters and the parameters of the lining structure on the segment internal force and deformation was analyzed. And the tunnel construction was modeled by three-dimensional dynamic finite element method. The influence of the construction process about ground subsidence and segment stress was discussed, in order to guide urban subway tunnel construction design.


2019 ◽  
Author(s):  
Sayan Mondal ◽  
Gary Tresadern ◽  
Jeremy Greenwood ◽  
Byungchan Kim ◽  
Joe Kaus ◽  
...  

<p>Optimizing the solubility of small molecules is important in a wide variety of contexts, including in drug discovery where the optimization of aqueous solubility is often crucial to achieve oral bioavailability. In such a context, solubility optimization cannot be successfully pursued by indiscriminate increases in polarity, which would likely reduce permeability and potency. Moreover, increasing polarity may not even improve solubility itself in many cases, if it stabilizes the solid-state form. Here we present a novel physics-based approach to predict the solubility of small molecules, that takes into account three-dimensional solid-state characteristics in addition to polarity. The calculated solubilities are in good agreement with experimental solubilities taken both from the literature as well as from several active pharmaceutical discovery projects. This computational approach enables strategies to optimize solubility by disrupting the three-dimensional solid-state packing of novel chemical matter, illustrated here for an active medicinal chemistry campaign.</p>


2019 ◽  
Vol 4 (2) ◽  
pp. 16
Author(s):  
Eljufout ◽  
Toutanji ◽  
Al-Qaralleh

Several standard fatigue testing methods are used to determine the fatigue stress-life prediction model (S-N curve) and the endurance limit of Reinforced Concrete (RC) beams, including the application of constant cyclic tension-tension loads at different stress or strain ranges. The standard fatigue testing methods are time-consuming and expensive to perform, as a large number of specimens is needed to obtain valid results. The purpose of this paper is to examine a fatigue stress-life predication model of RC beams that are developed with an accelerated fatigue approach. This approach is based on the hypothesis of linear accumulative damage of the Palmgren–Miner rule, whereby the applied cyclic load range is linearly increased with respect to the number of cycles until the specimen fails. A three-dimensional RC beam was modeled and validated using ANSYS software. Numerical simulations were performed for the RC beam under linearly increased cyclic loading with different initial loading conditions. A fatigue stress-life model was developed that was based on the analyzed data of three specimens. The accelerated fatigue approach has a higher rate of damage accumulations than the standard testing approach. All of the analyzed specimens failed due to an unstable cracking of concrete. The developed fatigue stress-life model fits the upper 95% prediction band of RC beams that were tested under constant amplitude cyclic loading.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1622
Author(s):  
Wipawee Tepnatim ◽  
Witchuda Daud ◽  
Pitiya Kamonpatana

The microwave oven has become a standard appliance to reheat or cook meals in households and convenience stores. However, the main problem of microwave heating is the non-uniform temperature distribution, which may affect food quality and health safety. A three-dimensional mathematical model was developed to simulate the temperature distribution of four ready-to-eat sausages in a plastic package in a stationary versus a rotating microwave oven, and the model was validated experimentally. COMSOL software was applied to predict sausage temperatures at different orientations for the stationary microwave model, whereas COMSOL and COMSOL in combination with MATLAB software were used for a rotating microwave model. A sausage orientation at 135° with the waveguide was similar to that using the rotating microwave model regarding uniform thermal and electric field distributions. Both rotating models provided good agreement between the predicted and actual values and had greater precision than the stationary model. In addition, the computational time using COMSOL in combination with MATLAB was reduced by 60% compared to COMSOL alone. Consequently, the models could assist food producers and associations in designing packaging materials to prevent leakage of the packaging compound, developing new products and applications to improve product heating uniformity, and reducing the cost and time of the research and development stage.


2021 ◽  
Vol 11 (5) ◽  
pp. 2225
Author(s):  
Fu Wang ◽  
Guijun Shi ◽  
Wenbo Zhai ◽  
Bin Li ◽  
Chao Zhang ◽  
...  

The steel assembled support structure of a foundation pit can be assembled easily with high strength and recycling value. Steel’s performance is significantly affected by the surrounding temperature due to its temperature sensitivity. Here, a full-scale experiment was conducted to study the influence of temperature on the internal force and deformation of supporting structures, and a three-dimensional finite element model was established for comparative analysis. The test results showed that under the temperature effect, the deformation of the central retaining pile was composed of rigid rotation and flexural deformation, while the adjacent pile of central retaining pile only experienced flexural deformation. The stress on the retaining pile crown changed little, while more stress accumulated at the bottom. Compared with the crown beam and waist beam 2, the stress on waist beam 1 was significantly affected by the temperature and increased by about 0.70 MPa/°C. Meanwhile, the stress of the rigid panel was greatly affected by the temperature, increasing 78% and 82% when the temperature increased by 15 °C on rigid panel 1 and rigid panel 2, respectively. The comparative simulation results indicated that the bending moment and shear strength of pile 1 were markedly affected by the temperature, but pile 2 and pile 3 were basically stable. Lastly, as the temperature varied, waist beam 2 had the largest change in the deflection, followed by waist beam 1; the crown beam experienced the smallest change in the deflection.


2021 ◽  
Vol 45 (3) ◽  
Author(s):  
C. M. Durnea ◽  
S. Siddiqi ◽  
D. Nazarian ◽  
G. Munneke ◽  
P. M. Sedgwick ◽  
...  

AbstractThe feasibility of rendering three dimensional (3D) pelvic models of vaginal, urethral and paraurethral lesions from 2D MRI has been demonstrated previously. To quantitatively compare 3D models using two different image processing applications: 3D Slicer and OsiriX. Secondary analysis and processing of five MRI scan based image sets from female patients aged 29–43 years old with vaginal or paraurethral lesions. Cross sectional image sets were used to create 3D models of the pelvic structures with 3D Slicer and OsiriX image processing applications. The linear dimensions of the models created using the two different methods were compared using Bland-Altman plots. The comparisons demonstrated good agreement between measurements from the two applications. The two data sets obtained from different image processing methods demonstrated good agreement. Both 3D Slicer and OsiriX can be used interchangeably and produce almost similar results. The clinical role of this investigation modality remains to be further evaluated.


Sign in / Sign up

Export Citation Format

Share Document