scholarly journals Associations among Dietary Omega-3 Polyunsaturated Fatty Acids, the Gut Microbiota, and Intestinal Immunity

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yawei Fu ◽  
Yadong Wang ◽  
Hu Gao ◽  
DongHua Li ◽  
RuiRui Jiang ◽  
...  

Omega-3 polyunsaturated fatty acids (omega-3 PUFAs), which are essential fatty acids that humans should obtain from diet, have potential benefits for human health. In addition to altering the structure and function of cell membranes, omega-3 PUFAs (docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), alpha-linolenic acid (ALA), and docosapentaenoic acid (DPA)) exert different effects on intestinal immune tolerance and gut microbiota maintenance. Firstly, we review the effect of omega-3 PUFAs on gut microbiota. And the effects of omega-3 PUFAs on intestinal immunity and inflammation were described. Furthermore, the important roles of omega-3 PUFAs in maintaining the balance between gut immunity and the gut microbiota were discussed. Additional factors, such as obesity and diseases (NAFLD, gastrointestinal malignancies or cancer, bacterial and viral infections), which are associated with variability in omega-3 PUFA metabolism, can influence omega-3 PUFAs–microbiome–immune system interactions in the intestinal tract and also play roles in regulating gut immunity. This review identifies several pathways by which the microbiota modulates the gut immune system through omega-3 PUFAs. Omega-3 supplementation can be targeted to specific pathways to prevent and alleviate intestinal diseases, which may help researchers identify innovative diagnostic methods.

2011 ◽  
Vol 59 (6) ◽  
pp. 369 ◽  
Author(s):  
A. J. Hulbert ◽  
Sarah K. Abbott

There are four types of fatty acids but only two types are essential nutritional requirements for many animals. These are the omega-6 polyunsaturated fatty acids (n-6 PUFA) and the omega-3 polyunsaturated fatty acids (n-3 PUFA) and because they cannot be converted to one another they are separate essential dietary requirements. They are only required in small amounts in the diet and their biological importance stems largely from their role as constituents of membrane lipids. They are synthesised by plants and, as a generalisation, green leaves are the source of n-3 PUFA while seeds are the source of n-6 PUFA in the food chain. While the fatty acid composition of storage fats (triglycerides) is strongly influenced by dietary fatty acid composition, this is not the case for membrane fats. The fatty acid composition of membrane lipids is relatively unresponsive to dietary fatty acid composition, although n-3 PUFA and n-6 PUFA can substitute for each in membrane lipids to some extent. Membrane fatty acid composition appears to be regulated and specific for different species. The role of essential fats in the diet of animals on (1) basal metabolic rate, (2) thermoregulation, (3) maximum longevity, and (4) exercise performance is discussed.


Medicines ◽  
2018 ◽  
Vol 5 (3) ◽  
pp. 102 ◽  
Author(s):  
Leodevico Ilag

Three recent studies revealed synergy between immune-checkpoint inhibitors and the microbiome as a new approach in the treatment of cancer. Incidentally, there has been significant progress in understanding the role of polyunsaturated fatty acids (PUFAs) in modulating cancer and the immune system, as well as in regulating the microbiome. Inflammation seems to be the common denominator among these seemingly unrelated biological entities—immune system, the microbiome, and long-chain polyunsaturated fatty acids (LC-PUFAs). This commentary presents a hypothesis proposing the existence of an optimal level of LC-PUFAs that nurtures the suitable gut microbiota preventing dysbiosis. This synergy between optimal LC-PUFAs and gut microbiota helps the immune system overcome the immunosuppressive tumour microenvironment including enhancing the efficacy of immune checkpoint inhibitors. A model on how LC-PUFAs (such as omega(n)-3 and n-6 fatty acids) forms a synergistic triad with the immune system and the microbiome in regulating inflammation to maintain homeostasis is presented. The principles underlying the hypothesis provide a basis in managing and even preventing cancer and other chronic diseases associated with inflammation.


Author(s):  
Xueliang Zhu ◽  
Zhichao Bi ◽  
Chen Yang ◽  
Yanhui Guo ◽  
Jieli Yuan ◽  
...  

Background: Omega-3 polyunsaturated fatty acids (PUFAs) play beneficial roles in metabolism and health. Little is known about the effects of different doses of omega-3 PUFAs on gut microbiota. Objective: In this study, we focus on the effects of different doses of omega-3 PUFAs on gut microbiota and immunity. Design: BALB/c mice was first treated with ceftriaxone sodium for 7 days, and then they received saline or different doses of omega-3 PUFAs (30, 60 and 90 mg omega-3 PUFAs) via daily gavage for 21 days. Alterations of cecum microbiota; the tight junction proteins, zonula occludens 3 (ZO3) and occludin, in the ileal wall; serum lipopolysaccharide (LPS); Interleukin-10 (IL-10), interleukin-1β (IL-1β), and Tumour Necrosis Factor α (TNF-α) ; mucus SIgA levels were measured. Results: Compared with the ceftriaxone sodium administration group, significant increases in bacterial richness and diversity were observed in the 60- and 90-mg omega-3 PUFA groups, while only a slight increase was observed in the 30-mg omega-3 PUFA group. A higher percentage of several genera, including Lactobacillus, Helicobacter, and Ruminococcus, and a lower percentage of Bacteroides, Clostridium, and Prevotella were observed in the 60- and 90-mg omega-3 PUFA groups when compared with those in the 30-mg group. The expression of ZO3 and occludin proteins increased in 60- and 90-mg omega-3 PUFA groups compared with the natural recovery group. The mucus SIgA and serum IL-10 levels were increased, and serum levels of LPS, IL-1β, and TNF-α were decreased in the 60- and 90-mg omega-3 PUFA groups when compared with those in the ceftriaxone sodium-treated group. Conclusion: Different doses of omega-3 PUFAs have different therapeutic effects on the intestinal microbiota. The 60- and 90-mg omega-3 PUFA supplementation had better recovery effects on the gut microbiota and immunity than those of the 30 mg omega-3 PUFAs supplementation.


Fisheries ◽  
2020 ◽  
Vol 2020 (5) ◽  
pp. 101-106
Author(s):  
Elena Chupikova ◽  
Konstantin Pavel ◽  
Svetlana Tkachenko

The article analyzes the fatty acid composition of the frozen iwashi lipids of different shelf lives. It is established that the total amount of essential fatty acids omega-3 and omega-6 in iwashi’s fat reaches almost 90% of all polyunsaturated fatty acids and remains practically unchanged for 12 months of fish cold storage. It is shown that products from iwashi contain a significant amount of essential fatty acids, indispensable for the human body, which can be used to optimize the population nutrition and satisfy the physiological needs in eicosopentaenoic and docosahexaenoic fatty acids.


Author(s):  
Kshitij Bhardwaj ◽  
Narsingh Verma

According to the report of a global survey of the omega-3 fatty acids. majorities of countries in the world are facing the deficiency of essential fatty acids specially of omega 3, this very low level of essential fatty acid leads to increase global risk for chronic disease. Many reports are published about the role of omega 3 on the immune system in health and in diseases, especially those caused by the excessive inflammatory response. Numerous studies have shown that these compounds are immunoregulatory and immunosuppressive and thus may increase susceptibility to infection. They also manipulate the functions of antigen-presenting cells and lymphocytes, including T and B cells, NK cells, LAK cells and also T regulatory cells. In this article, we made a simple attempt to elucidate the effect of omega-3 deficiency in our immune system, especially during the virus and other infections. In this period of severe virus infections studies on omega3 and its role in immune is of great Interest.


2016 ◽  
Vol 25 (1) ◽  
pp. 33
Author(s):  
Dukagjin M Blakaj

Omega-3 polyunsaturated fatty acids have received a considerable amount of attention in a number of human pathologies, including inflammation, cardiovascular disease, behavioral or mental disease, and especially depression. They make up one component of mammalian brain tissue that includes the different saturated, monounsaturated, and polyunsaturated fatty acids (McNamara and Carlson, 2006). 


2017 ◽  
Vol 59 ◽  
pp. 21-37 ◽  
Author(s):  
Ruairi C. Robertson ◽  
Clara Seira Oriach ◽  
Kiera Murphy ◽  
Gerard M. Moloney ◽  
John F. Cryan ◽  
...  

2019 ◽  
Vol 10 (7) ◽  
pp. 751-758 ◽  
Author(s):  
A. Horigome ◽  
R. Okubo ◽  
K. Hamazaki ◽  
T. Kinoshita ◽  
N. Katsumata ◽  
...  

Omega-3 polyunsaturated fatty acids (PUFAs) are essential nutrients demonstrated to have health benefits, such as decreasing the risk of coronary heart disease, improving parameters associated with metabolic syndrome, and decreasing anxiety symptoms and depression risk. Previous intervention studies indicated the association between blood or tissue PUFA levels and the gut microbiota; however, the details remain incompletely elucidated. We conducted a cross-sectional study to examine the association between PUFAs and the gut microbiota among breast cancer survivors. Adults who had been diagnosed with invasive breast cancer more than one year ago and were not currently undergoing chemotherapy were enrolled. Capillary blood and faecal samples were obtained to assess the blood PUFA levels and gut microbiota compositions. The mean age (n=124) was 58.7 years, and 46% of the participants had a history of chemotherapy. Multiple regression analysis controlling for possible confounders indicated that an increased relative abundance of Actinobacteria was significantly associated with increased levels of docosahexaenoic acid (DHA, beta=0.304, q<0.01). At the genus level, the abundance of Bifidobacterium was positively associated with the level of DHA (beta=0.307, q<0.01). No significant association between omega-6 PUFAs and the relative abundances of gut microbiota members was observed. In addition, analyses stratified by the history of chemotherapy indicated significant associations of PUFA levels with the abundance of some bacterial taxa, including the phylum Actinobacteria (DHA, beta=0.365, q<0.01) and Bacteroidetes (EPA, beta=-0.339, q<0.01) and the genus Bifidobacterium (DHA, beta=0.368, q<0.01) only among participants without a history of chemotherapy. These findings provide the first evidence of positive associations between the abundances of Bifidobacterium among the gut microbiota and the levels of omega-3 PUFAs in the blood. Further studies are required to gain additional insight into these associations in healthy subjects as well as into the causality of the relationship.


2022 ◽  
Author(s):  
Lamazhapova Galina Petrovna ◽  
Syngeeva Erzhena Vladimirovna ◽  
Zhamsaranova Sesegma Dashievna ◽  
Kozlova Tatyana Sergeevna

We developed ω-3-enriched bread by adding a liposomal polyunsaturated fatty acids (PUFAs) concentrate to the bread recipe. We determined that subsequent feeding of the ω-3-enriched bread to experimental animals in the alimentary dyslipidaemia state led to normalisation of the lipid profile of the blood serum, with a decrease in the total cholesterol, triglycerides, and low-density and very lowdensity lipoproteins. The high-density lipoproteins, antioxidants, reduced glutathione and glutathione reductase activity index increased compared to the corresponding indicators in animals with alimentary dyslipidaemia that were fed bread without ω-3. The ω-3-enriched bread diet significantly decreased harmful oxidation products (diene conjugates and malondialdehyde) in the blood plasma, erythrocytes and liver. Therefore, the results suggested that bread enriched with ω-3 fatty acids is a functional food with hypolipidaemic action. The results on the total content of fatty acids in lipids from bread samples prepared according to a standard recipe and bread enriched with concentrate showed that the relative content of omega-3 PUFAs in the fortified bread significantly increased by 3.2 times compared to bread without the addition of concentrate. The additive did not change the consumer qualities of the finished product (taste and smell of the bread). Keywords: alimentary dyslipidaemia, antioxidant effect, bread, functional food, lipid profile, ω-3 polyunsaturated fatty acids


Nutrients ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1561 ◽  
Author(s):  
Ewa Sokoła-Wysoczańska ◽  
Tomasz Wysoczański ◽  
Jolanta Wagner ◽  
Katarzyna Czyż ◽  
Robert Bodkowski ◽  
...  

Cardiovascular diseases are described as the leading cause of morbidity and mortality in modern societies. Therefore, the importance of cardiovascular diseases prevention is widely reflected in the increasing number of reports on the topic among the key scientific research efforts of the recent period. The importance of essential fatty acids (EFAs) has been recognized in the fields of cardiac science and cardiac medicine, with the significant effects of various fatty acids having been confirmed by experimental studies. Polyunsaturated fatty acids are considered to be important versatile mediators for improving and maintaining human health over the entire lifespan, however, only the cardiac effect has been extensively documented. Recently, it has been shown that omega-3 fatty acids may play a beneficial role in several human pathologies, such as obesity and diabetes mellitus type 2, and are also associated with a reduced incidence of stroke and atherosclerosis, and decreased incidence of cardiovascular diseases. A reasonable diet and wise supplementation of omega-3 EFAs are essential in the prevention and treatment of cardiovascular diseases prevention and treatment.


Sign in / Sign up

Export Citation Format

Share Document