scholarly journals Unified Failure Strength Criterion for Terrace Slope Reinforcement Materials

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xuan Fang ◽  
Jie Yang ◽  
Jia-Ming Na ◽  
Zhen-Yuan Gu

This paper presents a study on the failure strength criterion of terrace slope reinforcement materials, such as lean cemented sand and gravel (LCSG) material, under a triaxial stress state. Cement content and confining pressure were selected as major factors to investigate their influence on the peak stress of terrace slope reinforcement materials based on experimental results and data from the literature. The mechanical properties of the LCSG samples, with cement contents of 60, 80, and 90 kg/m3, and noncemented sand and gravel materials were tested under four confining pressure levels (namely, 300, 600, 1000, and 1500 kPa). The results show that the strength of LCSG material improves as the confining pressure increases. When the confining pressure exceeds 1200 kPa, the rate of increase of the strength for LCSG material and other cemented grained materials declines generally. The material strength displays a linear increase with the growth of the cement content. When the axial load rises up to a certain value, damage will occur at the particle cemented site near the shear plane, and the resistance stress generated by the cementation shows a trend of growth first and then attenuation, and concurrently, the friction between particles increases by degrees. Based on the identified strength characteristics of LCSG material under different cement contents and confining pressures, a new strength criterion that incorporates the frictional strengths and the cementing strengths is proposed for LCSG and other similar materials. The results of this work can provide an important theoretical basis for the stability calculation of terrace slopes and LCSG dams.

2019 ◽  
Vol 9 (11) ◽  
pp. 2369 ◽  
Author(s):  
Jie Yang ◽  
Xin Cai ◽  
Xing-Wen Guo ◽  
Jin-Lei Zhao

Knowing the deformation properties of cemented sand and gravel (CSG) material can help construct reasonable constitutive models for the material, which can be used to simulate the structural performance of various practical projects including CSG dams. In this study, to investigate the effect of cement content on the deformation properties of CSG material, we employ triaxial compressive tests for cement contents of 20, 40, 60, 80, and 100 kg/m3 with a confining pressure range of 0.3–1.2 MPa, and theoretically analyze the results by the regression analysis prediction method. Here, we show that both cement content and confining pressure influence the deformation properties of CSG material: for an increase in cement content, the failure strain decreases and brittleness of CSG material increases; the initial modulus of the CSG material increased exponentially with increasing cement content or confining pressure; the peak volumetric strain and its corresponding axial strain increase linearly with increasing confining pressures, which decrease with increasing cement content; the initial tangent volumetric ratio can also be determined by the peak volumetric strain and its corresponding axial strain.


2021 ◽  
Author(s):  
Sina Karimi ◽  
Hamed Farshbaf Aghajani

Abstract This paper aims to achieve a specific type of cemented sand-gravel mixtures with low permeability to implement in the impervious zone of hardfill dams. To this end, various mixtures are prepared by blending two native soils of sand and gravel with different amounts of kaolinite or bentonite additives in presence of various cement content. The compaction properties, uniaxial compressive strength, permeability and scanning electron microscope (SEM) images of mixtures are measured. According to the results, the cemented mixture containing 10% of kaolinite additive regardless of native soil type exhibits the maximum strength. However, the bentonite disturbs the cement hydration in the mixture, and the strength of mixtures especially with high cement content decreases with increasing the bentonite content. The permeability of mixtures is related to the amount of cement and fine additive in the mixture. The permeability of both cemented sand and gravel mixtures decreases with increasing the bentonite additive. However, the kaolinite additive has a limited influence on the permeability of cemented gravel mixtures. The lowest permeability is achieved in the mixture involving the higher amount of bentonite (with a weight ratio of 30%) in presence of adequate cement.


2014 ◽  
Vol 580-583 ◽  
pp. 1846-1851
Author(s):  
Hua Fu ◽  
Jian Gang Feng ◽  
Hua Qiang Han ◽  
Hua Ling

The static and dynamic triaxial shear tests and deformation tests on CSG (cemented sand and gravel) are conducted with different amount of added cementing materials. The mechanical indexes and parameters have obvious increments with mixing of cementing material and accumulation of curing days. However the increments will become mild with further adding of cementing material. The deformation curve of CSG test sample is similar to the curve of sand-gravel sample without mixing with any cementing material, and they both follow the trend of semi-logarithmic decrement law. The dynamic permanent deformation of CSG increases with the increments of confining pressure, consolidation stress and dynamic stress. Thus this deformation still can be calculated using the constitutive model of dynamic residual deformation proposed by Zhujiang Shen Academician.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Jie Yang ◽  
Xin Cai ◽  
Yangong Shan ◽  
Miaomiao Yang ◽  
Xingwen Guo ◽  
...  

Lean cemented sand and gravel (LCSG) materials are increasingly being used in dams, embankments, and other civil engineering applications. Therefore, their mechanical properties and stress-strain behavior should be systematically understood. In this study, the small-strain dynamic properties of LCSG materials were examined. A series of dynamic triaxial tests were performed to investigate the effects of the confining pressure and cementing agent content of the material on its dynamic shear modulus (Gd) and damping ratio (λ). The results show that Gd increased and λ decreased with increasing confining pressure and cementing agent content; however, under the same confining pressure and cementing agent content, Gd decreased gradually in accordance with shear strain. Furthermore, new expressions were derived for Gd and λ, as well as for their maxima. The results of this study could provide a reference for practical engineering applications, including the construction of dams using LCSG materials.


2020 ◽  
Vol 27 (1) ◽  
pp. 291-298
Author(s):  
Shoukai Chen ◽  
Yongqiwen Fu ◽  
Lei Guo ◽  
Shifeng Yang ◽  
Yajing Bie

AbstractA data set of cemented sand and gravel (CSG) mix proportion and 28-day compressive strength was established, with outliers determined and removed based on the Boxplot. Then, the distribution law of compressive strength of CSG was analyzed using the skewness kurtosis and single-sample Kolmogorov-Smirnov tests. And with the help of Python software, a model based on Back Propagation neural network was built to predict the compressive strength of CSG according to its mix proportion. The results showed that the compressive strength follows the normal distribution law, the expected value and variance were 5.471 MPa and 3.962 MPa respectively, and the average relative error was 7.16%, indicating the predictability of compressive strength of CSG and its correlation with the mix proportion.


1995 ◽  
Vol 32 (2) ◽  
pp. 195-203 ◽  
Author(s):  
Fanyu Zhu ◽  
Jack I. Clark ◽  
Michael J. Paulin

This paper presents the results of a laboratory study on the at-rest lateral stress and Ko of two artificially cemented sands. A modified oedometer ring was used to measure the lateral stress of cemented and uncemented sands. Test materials were No. 3 Ottawa sand and a marine sand with Portland cement. The specimens were prepared using the method of undercompaction to minimize the influence of specimen preparation on test results. The cement contents were 0, 0.5, 1.0, 2.0, 4.0, and 8.0% by the weight of dry sand. The water content of the specimens was 4% of the weight of dry sand and cement. When the sands were cured under zero confining pressure, the test results indicated the following: the at-rest lateral stress in cemented sands decreases significantly with increasing cement content; the relationship between the vertical and at-rest lateral stress is nonlinear and the value of Ko increases with increasing vertical stress; and the lateral stress decreases with sand density and curing period. When the specimens were cured under vertical stress, the value of Ko during the removal of vertical loading increased with both overconsolidation ratio and cement content. Stress history has a significant influence on the behaviour of at-rest lateral stress in cement sands. Key words : cemented sand, Ko, lateral stress, overconsolidation, stress history.


2015 ◽  
Vol 52 (12) ◽  
pp. 1901-1912 ◽  
Author(s):  
James P. Doherty ◽  
Alsidqi Hasan ◽  
Gonzalo H. Suazo ◽  
Andy Fourie

This paper presents in-stope measurements of total stress and pore-water pressure at strategic locations within three underground stopes at the Raleigh mine site (Western Australia) that were filled with cemented paste backfill (CPB). The three stopes were very similar in shape. Key differences among the stopes were the filling and resting schedules, the barricade drainage systems used, and the cement content of the CPB. Data from the stopes are compared to determine which controllable factors most significantly influence barricade pressures during and after filling. The most significant factor was the scheduling of rest periods between filling, with even very short pauses in filling dramatically reducing the rate of increase of pore-water pressure and total stress with increasing height of fill.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Anhua Xu ◽  
Pengcheng Wang ◽  
Jianhong Fang

The distribution of chlorine saline soils is extensive in Haixi region of Qinghai Province in Northwest China. Its natural and geographical conditions are unique, and the external environment varies greatly. To study the effects of variable external environment on the mechanical characteristics of chlorine saline soils, a number of unconsolidated undrained (UU) dynamic triaxial tests under different confining pressure, moisture content, and loading frequency were carried out. The dynamic stress–dynamic strain, failure strength, dynamic elastic modulus, and parameter of shear strength were analyzed. The triaxial test results demonstrated that the stress–strain curves of the soil were strain-hardening. The failure strength and dynamic elastic modulus increased with the increasing of confining pressure; the law with moisture content and loading frequency were inconsistent. The dynamic cohesion and dynamic friction angle increased with the increasing of loading frequency, but decreased with the increasing of moisture content. Besides, the significance analysis theory was used to analyze the effect degree of different factors. It found that the effects of confining pressure, loading frequency, and the interaction between confining pressure and frequency on mechanical characteristics were significant, but the moisture content had less effect.


Sign in / Sign up

Export Citation Format

Share Document