scholarly journals Facile and High-yield Synthesis of N-doped Carbon Quantum Dots from Biomass Quinoa Saponin for the Detection of Co2+

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Cuo Zhou ◽  
Shunwei Wu ◽  
Shenghui Qi ◽  
Weijun Song ◽  
Chunyan Sun

Hydrothermal synthesis of carbon quantum dots (CQDs) from natural biomass is a green and sustainable route for CQDs applications in various fields. In this work, the preparation and characterization of CQDs based on quinoa saponin were investigated. The optimum synthetic conditions determined by orthogonal experiments were as follows: 2 g quinoa saponin powder and 0.04 mol ethylenediamine reacted at 200°C for 10 h. The relative fluorescence quantum yield (QY = 22.2%) can be obtained, which is higher than some results reported in the literatures. The prepared CQDs had a small and uniform size (∼2.25 nm) and exhibited excitation wavelength-dependent blue light emission behavior. The CQDs displayed excellent sensitivity for Co2+ detection along with good linear correlation ranging from 20 to 150 µM and the detection limit of 0.49 µM. The CQDs prepared in this experiment were successfully implanted into soybean sprouts for fluorescence imaging. The sprouts could grow healthily even soaked in the CQDs solution for two weeks, demonstrating the low toxicity of the CQDs. The advantages of the CQDs, such as low cost, ease of manufacture, nontoxicity, and stability, have potential applications in many areas such as metal ion detection and biosensing.

2017 ◽  
Vol 41 (21) ◽  
pp. 13130-13139 ◽  
Author(s):  
S. Solomon Jones ◽  
Parikshit Sahatiya ◽  
Sushmee Badhulika

In this work, we demonstrate the high-yield synthesis of carbon quantum dots using a one-step eco-friendly, low-cost thermal treatment of a renewable biomass, i.e. natural chia seeds.


Chemosensors ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 138
Author(s):  
Silvija Šafranko ◽  
Dominik Goman ◽  
Anamarija Stanković ◽  
Martina Medvidović-Kosanović ◽  
Tihomir Moslavac ◽  
...  

The fluorescent carbon quantum dots (CQDs) represent an emerging subset of carbonaceous nanomaterials, recently becoming a powerful tool for biosensing, bioimaging, and drug and gene delivery. In general, carbon dots are defined as zero-dimensional (0D), spherical-like nanoparticles with <10 nm in size. Their unique chemical, optical, and electronic properties make CQDs versatile materials for a wide spectrum of applications, mainly for the sensing and biomedical purposes. Due to their good biocompatibility, water solubility, and relatively facile modification, these novel materials have attracted tremendous interest in recent years, which is especially important for nanotechnology and nanoscience expertise. The preparation of the biomass-derived CQDs has attracted growing interest recently due to their low-cost, renewable, and green biomass resources, presenting also the variability of possible modification for the enhancement of CQDs’ properties. This review is primarily focused on the recent developments in carbon dots and their application in the sensing of different chemical species within the last five years. Furthermore, special emphasis has been made regarding the green approaches for obtaining CQDs and nanomaterial characterization toward better understanding the mechanisms of photoluminescent behavior and sensing performance. In addition, some of the challenges and future outlooks in CQDs research have been briefly outlined.


2021 ◽  
Author(s):  
Lan Yuwei Lan ◽  
Yuwei Lan ◽  
Wenbin Bao ◽  
Chunfeng Liang ◽  
Guowei Li ◽  
...  

Abstract High-fluorescence Cu/N codoped carbon quantum dots (Cu/NCQDs) were prepared by a one-step hydrothermal method using frangipani as the carbon source and copper acetate as the copper source. The Cu/NCQDs exhibited high-intensity, stable blue fluorescence that is independent of the excitation wavelength. Since metronidazole can effectively quench the fluorescence intensity of Cu/NCQDs, a metronidazole fluorescence-detection method using Cu/NCQDs as the fluorescence probe was developed, and the quenching mechanism was studied.The method has the advantages of simplicity, speed, and low cost. Besides,it has a wider linear range and detection limit. Further, the metronidazole content in actual samples was determined by this method, with good results.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2249
Author(s):  
Francesca Limosani ◽  
Elvira Maria Bauer ◽  
Daniele Cecchetti ◽  
Stefano Biagioni ◽  
Viviana Orlando ◽  
...  

In the present study, we successfully synthesized N-doped carbon quantum dots (N-CQDs) using a top-down approach, i.e., hydroxyl radical opening of fullerene with hydrogen peroxide, in basic ambient using ammonia for two different reaction times. The ensuing characterization via dynamic light scattering, SEM, and IR spectroscopy revealed a size control that was dependent on the reaction time, as well as a more pronounced -NH2 functionalization. The N-CQDs were probed for metal ion detection in aqueous solutions and during bioimaging and displayed a Cr3+ and Cu2+ selectivity shift at a higher degree of -NH2 functionalization, as well as HEK-293 cell nuclei marking.


2018 ◽  
Vol 186 (1) ◽  
pp. 32-39 ◽  
Author(s):  
Sarita Devi ◽  
Amanjot Kaur ◽  
Sudipta Sarkar ◽  
Sujata Vohra ◽  
Sachin Tyagi

Polymers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 616 ◽  
Author(s):  
Xi Wang ◽  
Pei Yang ◽  
Qian Feng ◽  
Taotao Meng ◽  
Jing Wei ◽  
...  

Biomass-based carbon quantum dots (CQDs) have become a significant carbon materials by their virtues of being cost-effective, easy to fabricate and low in environmental impact. However, there are few reports regarding using cyanobacteria as a carbon source for the synthesis of fluorescent CQDs. In this study, the low-cost biomass of cyanobacteria was used as the sole carbon source to synthesize water-soluble CQDs by a simple hydrothermal method. The synthesized CQDs were mono-dispersed with an average diameter of 2.48 nm and exhibited excitation-dependent emission performance with a quantum yield of 9.24%. Furthermore, the cyanobacteria-derived CQDs had almost no photobleaching under long-time UV irradiation, and exhibited high photostability in the solutions with a wide range of pH and salinity. Since no chemical reagent was involved in the synthesis of CQDs, the as-prepared CQDs were confirmed to have low cytotoxicity for PC12 cells even at a high concentration. Additionally, the CQDs could be efficiently taken up by cells to illuminate the whole cell and create a clear distinction between cytoplasm and nucleus. The combined advantages of green synthesis, cost-effectiveness and low cytotoxicity make synthesized CQDs a significant carbon source and broaden the application of cyanobacteria and provide an economical route to fabricate CQDs on a large scale.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Aumber Abbas ◽  
Tanveer A. Tabish ◽  
Steve J. Bull ◽  
Tuti Mariana Lim ◽  
Anh N. Phan

AbstractGraphene quantum dots (GQDs), a novel type of zero-dimensional fluorescent materials, have gained considerable attention owing to their unique optical properties, size and quantum confinement. However, their high cost and low yield remain open challenges for practical applications. In this work, a low cost, green and renewable biomass resource is utilised for the high yield synthesis of GQDs via microwave treatment. The synthesis approach involves oxidative cutting of short range ordered carbon derived from pyrolysis of biomass waste. The GQDs are successfully synthesised with a high yield of over 84%, the highest value reported to date for biomass derived GQDs. As prepared GQDs are highly hydrophilic and exhibit unique excitation independent photoluminescence emission, attributed to their single-emission fluorescence centre. As prepared GQDs are further modified by simple hydrothermal treatment and exhibit pronounced optical properties with a high quantum yield of 0.23. These modified GQDs are used for the highly selective and sensitive sensing of ferric ions (Fe3+). A sensitive sensor is prepared for the selective detection of Fe3+ ions with a detection limit of as low as 2.5 × 10–6 M. The utilisation of renewable resource along with facile microwave treatment paves the way to sustainable, high yield and cost-effective synthesis of GQDs for practical applications.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1492 ◽  
Author(s):  
Rafael Souza da Costa ◽  
Wiliam Ferreira da Cunha ◽  
Nizamara Simenremis Pereira ◽  
Artemis Marti Ceschin

Peat, an organic compound easily found in the soil (easy to acquire), has more than 50% elemental carbon in its composition and can be used as raw material to produce carbon quantum dots (CQDs, C-dots, Carbon Dots). In this work we describe two simple and low-cost routes for the acquisition of these photoluminescent materials based on peat. The final products were characterized by Fourier transform infrared spectroscopy (FTIR), absorption (UV-Vis) and emission (PL) spectra and high-resolution transmission electron microscopy (HRTEM). The produced CQDs have an average size of 3.5 nm and exhibit coloration between blue and green. In addition, it is possible to produce photoluminescence by means of the aromatic compounds also present in the composition of the peat, in turn exhibiting an intense green coloration. The results indicate great versatility of peat for the production of photoluminescent materials.


Sign in / Sign up

Export Citation Format

Share Document